Evaluación Ambiental y Energética del Sistema de Bombeo Electrosumergible en un campo de crudo pesado de la cuenca Caguán-Putumayo.

Mónica Fernanda Hernández Correa y Yurley Tatiana Uribe Castillo

Trabajo de Grado para Optar el título de Ingeniero de Petróleos

Director

Erik Giovany Montes Páez Magíster en ingeniería de hidrocarburos

Codirector
Oscar Mauricio Morales Rueda
Ingeniero Químico

Universidad Industrial de Santander
Facultad de Ingeniería Fisicoquímicas
Escuela de Ingeniería de Petróleos
Bucaramanga
2020

Dedicatoria

Infinitas gracias a mi familia por todo el apoyo que me han dado, a mi madre por su sacrificio e incansable trabajo para brindarme estabilidad y fuerza en los momentos difíciles, a mi hermano por ser esa gran persona que siempre ha estado pendiente de mí y me ha apoyado en todo lo que más ha podido, a mi hermana y sobrinos por ser esa fuente de alegría cada que nos veíamos.

Le agradezco a Dios por brindarme esta gran familia (creo que no pude tener una mejor), donde todos nos apoyamos y ayudamos para superarnos y ser mejores día a día.

YURLEY TATIANA URIBE CASTILLO

Dedicatoria

A la energía tan grande que es Dios, quien siempre estuvo ahí en miles de formas.

A mis abuelos Mónica Julia y José Isaías quienes hoy ya no están conmigo, pero me enseñaron el valor del amor y la oración.

A mi primo a quien también dios lo llamo para estar a su lado muy temprano.

A mis padres y a mi hermano a quienes la vida les ha puesto miles de batallas y no se han dejado vencer, los amo y son mi vida entera.

A mi director, M.Sc Erik Giovany Montes Páez quien me enseño que si se puede luchar hasta en el último minuto de la batalla.

A mi prima incondicional Ana quien con su ejemplo me ha enseñado a ser constante y ha demostrado ser como una hermana.

A mis abuelos Olga y Silverio, a mis tíos, por su gran ejemplo.

A mis primos a quienes no puedo ver constantemente, pero los llevo en mi corazón, Juliana, Camilo, José, Leidy, Fernanda, Karol, Johan, Camila, Jessica, Juan, Andrés y Karen.

A Eugenia Duran, quien fue más que una jefa para mí, por permitirme aprender de ella y brindarme tanto cariño.

Al Ingeniero Hernando B. quien me ha apoyado incondicionalmente como jefe.

A mis amigos incondicionales Viviana F, Nicolas P, y Diego R, quienes siempre han estado para mí y mi familia.

A todos los que por alguna razón se me olvida mencionar, pero que llevo en mi corazón incondicionalmente.

MÓNICA FERNANDA HERNÁNDEZ CORREA

Agradecimientos

A Dios por darnos el privilegio de dar este gran paso,

Al M. sc. Erik Giovany Montes Páez, director de esta tesis, maestro de vida, por su paciencia, comprensión y apoyo en momentos difíciles durante el desarrollo de este trabajo.

A los ingenieros Oscar Mauricio Morales Rueda y Agustín Ordoñez por su colaboración y disponibilidad durante el desarrollo de este trabajo.

A la Operadora que nos brindó los datos por permitirnos contar con la información para la realización de este trabajo.

A nuestras familias y amigos que siempre estuvieron en cada tropiezo brindándonos su fuerza y apoyo.

A la sede UIS Socorro por permitirnos dar el primer paso para que lo que era inicialmente un sueño, hoy sea una meta profesional cumplida.

A la Universidad Industrial de Santander por abrirnos sus puertas y acogernos en sus aulas.

Finalmente, agradecemos a todas las personas que nos brindaron su apoyo con sus conocimientos y recomendaciones para el desarrollo de este trabajo y su posterior finalización.

Dios los guie y los cuidé siempre.

Tabla de Contenido

	Pág.
Introducción	18
1. Objetivos.	19
1.1 Objetivo General	19
1.2 Objetivos Específicos	19
2. Fundamentos Teóricos	20
2.1 Sistemas de Levantamiento Convencionales	20
2.1.1 Bombeo Electrosumergible	20
2.1.1.1 Equipo de Subsuelo	23
2.1.1.1.1 Bomba Centrifuga	23
2.1.1.1.2 Separador de gas	27
2.1.1.1.3 Sello	28
2.1.1.1.4 Motor	29
2.1.1.1.5 Sensor de fondo de pozo	30
2.1.1.1.6 Clable ESP	31
2.1.1.2 Equipo de Superficie	32
2.1.1.2.1 Unidad de velocidad variable ESP	32
2.1.1.2.2 Panel de control ESP (velocidad fija)	33
2.1.1.3 Equipo de Apoyo	34
2.1.1.3.1 Transformador	34
2.1.1.3.2 Caja de empalme	34
2.1.1.3.3 Ensamblaje de Cabeza de pozo	35

2.1.1.3.4 La válvula de retención	35
2.1.1.3.5 Válvula de drenaje	35
2.1.1.3.6 Relé de retroceso	36
2.1.1.3.7 Centralizador	36
2.1.2 Bombeo Mecánico	36
2.1.3 Bombeo por Cavidades Progresivas (PCP)	38
2.2 Uso de la Energía y Huella de Carbono	40
2.2.1 Marcos Metodológicos Internacionales	43
2.2.2 Calculo de la Huella de Carbono	44
2.3 Software y Metodologías Empleados	45
2.3.1. Metodología de los 9 pasos de Baker Hugues (Bombeo electrosumergible)	45
2.3.2. Software Echometer QRod 3.1 (Bombeo Mecánico)	46
2.3.3. Software C-FER Technologies PC - PUMP (Bombeo por Cavidades Progresivas)	48
3. Generalidades Del Campo	48
3.1 Localización	48
3.2 Geología	49
3.2.1 Roca Generadora	50
3.2.2 Roca Reservorio	52
3.2.2.1 Formación Villeta	53
3.2.2.2 Formación Caballos	53
3.2.3 Roca Sello	53
3.2.4 Trampas	54
3.3 Producción acumulada	55

3.4 Propiedades petrofísicas y de los fluidos en el Campo
3.5 Sistema de Levantamiento empleado en el Campo
4. Casos de estudio, recopilación y evaluación de las variables operacionales de los pozos de
campo58
4.1 Selección de casos de estudio
4.2 Recopilación de las variables operacionales
4.3 Determinación de propiedades y variables adicionales
4.3.1 Gravedad específica, densidad del aceite y densidad de la mezcla
4.3.2 Relación Gas - Petróleo en solución (Rs), Factor de volumen de gas (Bg) y Factor de
formación (Bo)
4.3.3 IPR, Índice de productividad
4.3.4 Nivel dinámico y nivel de fluido
5. Diseño de los Sistemas de Levantamiento Artificial
5.1 Bombeo Electrosumergible
5.1.1 Recolección y análisis de data de pozo
5.1.2 Determinación de la capacidad de producción de pozo
5.1.3 Cálculos de volumen de gas y fracción de este en la entrada de la bomba
5.1.4 Altura dinámica total
5.1.5 Selección del tipo de bomba
5.1.5.1 Levantamiento por etapa de la bomba
5.1.5.2 Numero de etapas
5.1.5.3 Potencia de la bomba
5.1.5.4 Eficiencia de la bomba

5.1.6 Tamaño óptimo de componentes	81
5.1.6.1 Separador de Gas	81
5.1.6.2 Motor	82
5.1.7 Selección del cable eléctrico	84
5.1.8 Elección de accesorios y equipo opcional.	86
5.1.8.1 Voltaje en superficie	86
5.1.9 Selección de la variable de velocidad del sistema de Bombeo	88
5.2 Bombeo Mecánico	92
5.2.2 Parámetros de Entrada	92
5.2.3 Valores de Ajuste Predeterminados	93
5.2.4 Cálculos en base a SPM o Caudal deseado	95
5.3 Bombeo PCP	96
5.3.1 Profundidad de la bomba	98
5.3.2 Presión de entrada de la bomba (PIP)	98
5.3.3 Carga dinámica total (TDH)	98
5.3.4 Elastómero	98
5.3.5 Tipo de Bomba	99
5.3.5.1 Potencia requerida por la bomba	101
5.3.6 Requerimiento de torque	101
5.3.6.1 Torque hidráulico	101
5.3.6.2 Torque de resistencia sobre la sarta de varillas	102
5.3.7 Carga Axial	102
5.3.8 Selección de cabezal	103

5.3.9 Potencia consumida por el motor	104
5.4 Resultados obtenidos	105
6. Balance Energético	109
6.1 Calculo de la Huella de Carbono	109
6.2 Evaluación del impacto del ciclo de vida	111
6.3 Interpretación	113
6.4 Balance Energético	114
7. Análisis Financiero	118
8. Conclusiones.	122
9. Recomendaciones	125
Referencias Bibliográfica.	128

Lista de Tablas

Tabla 1. Componente de Bombeo Electrosumergible
Tabla 2. Clasificación de las unidades de Bombeo Mecánico
Tabla 3. Componentes del Bombeo Mecánico
Tabla 4. Componentes del bombeo por cavidades progresivas
Tabla 5. Datos de entrada y salida del software QRod
Tabla 6. Propiedades de los fluidos del Campo
Tabla 7. Propiedades de los casos de estudio
Tabla 8. Gravedad específica, densidad del aceite y densidad de la mezcla
Tabla 9. Relación Gas - Petróleo en solución (Rs), Factor de volumen de gas (Bg) y Factor de
formación (Bo)
Tabla 10. Índice de productividad, caudal en el punto de burbuja y caudal máximo
Tabla 11. Nivel dinámico y Nivel de Fluido
Tabla 12. Corrección de eficiencia de las bombas por efecto de viscosidad para los casos en
estudio. 80
Tabla 13. Volúmenes de fluidos en la entrada de la bomba
Tabla 14. Tipo de motor y especificaciones de potencia para BES
Tabla 15. Conversión de KVA a Kw
Tabla 16. Energía consumida por el sistema BES en superficie
Tabla 17. Selección de cabezal para casos de estudio
Tabla 18. Energía consumida por el sistema PCP en superficie
Tabla 19. Algunos Resultados obtenidos por Software Qrod para SLA Mecánico
Tabla 20. Resultados de potencia de los sistemas de levantamiento diseñados y el actual 107

Tabla 21. Resumen de los resultados obtenidos en el diseño de los sistemas de levantamiento
artificial
Tabla 22. Resultados del cálculo de huella de carbono para los SLA BES
Tabla 23. Relación Huella de Carbono y Unidad / Bomba SLA BES
Tabla 24. Energía generada por la combustión de un barril de petróleo para los pozos en estudio
Tabla 25. Balance energético de cada pozo de estudio con el actual SLA BES
Tabla 26. Balance energético de cada pozo para los diseños propuestos de SLA BES 116
Tabla 27. Energía consumida y generada por barril de fluido
Tabla 28. Balance Financiero de cada pozo de estudio con el actual SLA BES
Tabla 29. Balance Financiero de cada pozo para los diseños propuestos de SLA BES
Tabla 30. Inversión por barril producido versión por barril producido
Tabla 31. Resultados de inversión en energía para los SLA

Lista de Figuras

Figura 1. Configuración típica de una Bomba eléctrica sumergible	22
Figura 2. Impulsor.	23
Figura 3. Transferencia de energía por medio del impulsor y el difusor en una bomba	centrífuga
	24
Figura 4. Fluido a través del impulsor y difusor.	24
Figura 5. Corte transversal de una bomba centrifuga.	25
Figura 6. Impulsor de flujo mixto con ángulos de los álabes cercanos a 45°	26
Figura 7. Impulsor de flujo radial con ángulos de los álabes cercanos a 90°	26
Figura 8. Impulsor de flujo axial	27
Figura 9. Componentes del Separador de Gas ESP.	28
Figura 10. Componentes del sello ESP	29
Figura 11. Corte de motor ESP	30
Figura 12. Sensor Centinel +TM	31
Figura 13. Corte de cable plano y redondo	31
Figura 14. Componentes del sistema de control gráfico (GCS).	32
Figura 15. Pantalla del sistema de control gráfico (GCS).	33
Figura 16. Panel de control Centrilift Electrostart ESP.	34
Figura 17. Componentes del Sistema de Bombeo Mecánico.	38
Figura 18. Componentes de un sistema PCP.	39
Figura 19. Clasificación de emisiones según GHG Protocol	42
Figura 20. Clasificación de emisiones de GEI y sus fuentes.	42

Figura 21. Pasos metodológicos para el cálculo de la huella de carbono	44
Figura 22. Portada 9 Steps Baker Hughes	46
Figura 23. Interface Software QRod 3.1.	46
Figura 24. Software C-FER Technologies PC - PUMP	48
Figura 25. Bloques cuenca Caguán-Putumayo.	50
Figura 26. Sección cronoestratigráfica del sector Putumayo al sur de la Cuenc	a Caguán-
Putumayo donde se señalan los elementos del sistema petrolífero	51
Figura 27. Diagrama de Van Krevelen para las rocas del sector Putumayo	52
Figura 28. Trampas sector Putumayo.	54
Figura 29. Producción acumulada de petróleo para el Campo.	55
Figura 30. Estado mecánico típico de pozos.	57
Figura 31. Producción a través del tiempo del Pozo 1	61
Figura 32. Producción a través del tiempo del Pozo 2	61
Figura 33. Producción a través del tiempo del Pozo 3	62
Figura 34. IPR Inflow Performance Relationships Pozo 1.	67
Figura 35. IPR Inflow Performance Relationships Pozo 2	68
Figura 36. IPR Inflow Performance Relationships Pozo 3	68
Figura 37. Diagrama de flujo del diseño del SLA BES.	72
Figura 38. Diagrama de altura dinámica total.	75
Figura 39. Estimación de pérdidas de carga por fricción versus la tasa de bombeo e	n tubería y
revestimiento API estándar.	77
Figura 40. Curva de rendimiento de la bomba D3500N.	82
Figura 41 Canacidad de Corriente	85

Figura 42. Perdidas de Voltaje para cables eléctricos	85
Figura 43. Tornado Bomba A2700N.	89
Figura 44. Tornado Bomba D2400N.	90
Figura 45. Tornado Bomba D3500N.	91
Figura 46. Diagrama de flujo del diseño del SLA Mecánico	92
Figura 47. Parámetros de entrada requeridos por Qrod.	93
Figura 48. Valores de Ajuste Predeterminados requeridos por Qrod.	94
Figura 49. Calculo en base a SPM o Caudal deseado.	95
Figura 50. Ejemplo de los resultados obtenidos por el software Qrod.	96
Figura 51. Diagrama de flujo del diseño del SLA PCP.	97
Figura 52. Tipos de elastómero.	99
Figura 53. Modelo de bomba para los tres casos de estudio	100
Figura 54. Limite tomado del sistema de ACV para la evaluación del SLA	109
Figura 55. Huella de carbono generada por el equipo de Bombeo Electro sumergible qu	ue se
tienen en cada pozo actualmente.	112
Figura 56. Huella de carbono generada por los SLA de Bombeo Electro sumergible diseñ	ĭados
para cada pozo	112
Figura 57. Representación gráfica del análisis energético porcentual del SLA actual	116
Figura 58. Representación gráfica del análisis energético porcentual del SLA diseñado	117
Figura 59. Representación gráfica del análisis económico porcentual del SLA Actual	120
Figura 60. Representación gráfica del análisis económico porcentual del SLA diseñado	120

Lista de Apéndices

"Ver apéndices adjuntos en el CD y puede visualizarlos en base de datos de la biblioteca UIS"

Apéndice A. Guía Metodológica para la aplicación de la norma UNE-ISO 14064-1:2006 para el

desarrollo de inventarios de Gases de Efecto Invernadero en Organizaciones.

Apéndice B. Diseño y Resultados BM

Apéndice C. Diseño, análisis energético y financiero de SLA BES.

Apéndice C-1. Data de entrada.

Apéndice C-2. Capacidad de producción pozo 1.

Apéndice C-3. Capacidad de producción pozo 2.

Apéndice C-4. Capacidad de producción pozo 3.

Apéndice C-5. Poder Calorífico.

Apéndice C-6. Cálculos de gas.

Apéndice C-7. Cabeza Dinámica Total.

Apéndice C-8. Selección de Bomba.

Apéndice C-9. Tamaño óptimo de Componentes.

Apéndice C-10. Balance energético y financiero.

Apéndice C-11. Salida de Data.

Apéndice C-12. Sensibilidad de variables.

Apéndice C-13. Balance Económico y Energético

Apéndice D. Diseño y Resultados PCP

Apéndice E. REDA Electric Submersible Pump Technology Catalog, SCHLUMBERGER.

Apéndice F. Norma ANSI/HI 9.6.7-2010

16

Resumen

Título: Evaluación Ambiental y Energética del Sistema de Bombeo Electrosumergible en un campo de crudo pesado de la cuenca Caguán-Putumayo^{1*}

Autor: Mónica Fernanda Hernández Correa, Yurley Tatiana Uribe Castillo^{2**}

Palabras Clave: Sistema de Levantamiento Artificial, Bombeo Electrosumergible, Análisis Económico, Evaluación Ambiental.

Descripción: En la industria de los hidrocarburos y más exactamente en el área de producción, se ha contado con los mejores criterios tanto técnicos como financieros a la hora de seleccionar un sistema de levantamiento artificial (SLA). Sin embargo, en los últimos años, los parámetros energéticos y ambientales han tomado un papel importante en los proyectos de todas las industrias y del diario vivir de la sociedad y el mundo. Es por esto por lo que a la hora de seleccionar un SLA en un campo específico, se deben incluir no solo criterios técnicos y financieros sino ambientales y energéticos.

La finalidad de este proyecto es aplicar trabajos anteriores a un caso real, por lo que se evaluará ambiental y energéticamente el actual sistema de bombeo electrosumergible de un campo de crudo pesado en la cuenca Caguán-Putumayo, teniendo en cuenta la huella de carbono emitida indirectamente durante su funcionamiento. Además, de los posibles sistemas que se podrían aplicar teniendo en cuenta el plan de aumento de producción que tiene la operadora a cargo del capo. Esto se realizará diseñando nuevos sistemas de levantamiento (sistemas convencionales más usados en Colombia) con el fin de evaluarlos ambiental, energética y financieramente, y bajo estos parámetros poder proponer el mejor sistema para cada caso.

^{1*} Trabajo de Grado.

^{2**} Facultad de ingenierías fisicoquímicas. Escuela de ingeniería de petróleos. Director: M.Sc Erik Giovany Montes Páez.

Abstract

Title: Environmental and Energy Assessment of the Electrosubmersible Pumping System in a Heavy Crude Oil Field in the Caguán-Putumayo Basin^{3*}

Author: Mónica Fernanda Hernández Correa, Yurley Tatiana Uribe Castillo^{4**}

Key Words: Artificial Lifting System, Electrosubmersible Pumping, Economic Analysis, Environmental Assessment.

Description: In the hydrocarbon industry and more precisely in the production area, the best technical and financial criteria have been used when selecting an artificial lift system (SLA). However, in recent years, energy and environmental parameters have taken an important role in the projects of all industries and in the daily life of society and the world. This is why when selecting an SLA in a specific field, not only technical and financial but environmental and energy criteria should be included.

The purpose of this project is to apply previous work to a real case, so the current electrosubmersible pumping system of a heavy oil field in the Caguán-Putumayo basin will be environmentally and energetically evaluated, taking into account the indirectly emitted carbon footprint. during its operation. In addition, the possible systems that could be applied taking into account the production increase plan that the operator in charge of the boss has. This will be done by designing new survey systems (conventional systems most used in Colombia) in order to evaluate them environmentally, energetically and financially, and under these parameters to be able to propose the best system for each case.

^{3*} Degree work

^{4**} Faculty of Physical-Chemical Engineering. School of Petroleum Engineering. Director:Erik Giovany Montes Páez. Máster in Hydrocarbon Engineering. Codirector: Oscar Mauricio Morales Rueda. Chemical Engineer.

Introducción

En la industria de los hidrocarburos, se debe seleccionar de forma correcta todos los equipos que se requieren para las diferentes actividades que se presentan desde el primer momento. Es por esto, que al elegir el SLA (Sistema de Levantamiento Artificial) adecuado, siempre se han tenido en cuenta criterios técnicos y económicos según sea el caso de cada pozo. Sin embargo, las nuevas leyes de protección del medio ambiente han conllevado a pensar también en cuál de estos sistemas operaría de una manera más eficiente y sin afectar en gran medida a los ecosistemas presentes.

En este trabajo, primero se realizó una revisión de trabajos anteriores en los que se propone ser aplicados a un caso real. Es por esto por lo que se tomaron datos de pozos de un campo de crudo pesado de la cuenca Caguán-Putumayo, y se procedió a analizar la huella de carbono de los equipos de levantamiento artificial que allí operan. Teniendo en cuenta que este campo se encuentra en un plan y proceso de aumento de recobro como lo fue notificado por la operadora que nos brindó la data, se realizó el diseño de nuevos equipos para la tasa de producción deseada y así mismo se realizó la evaluación ambiental, energética y financiera para cada caso. Esta evaluación se realizó teniendo en cuenta dicho cálculo de la huella de carbono, la cual corresponde a las emisiones indirectas debido al consumo de energía eléctrica de los SLA; por esto, este indicador incluye solamente las emisiones por CO₂. Esto con el fin de dar las correspondientes recomendaciones sobre cuál de estos sistemas es el más indicado para operar en cada pozo, tanto por su eficiencia y economía, como por su desempeño amigable con el medio ambiente.

1. Objetivos

1.1 Objetivo General

Desarrollar una evaluación ambiental y energética del Sistema de Bombeo Electrosumergible empleado en un campo de crudo pesado de la cuenca Caguán-Putumayo.

1.2 Objetivos Específicos

- Diseñar sistemas de levantamiento artificial en un campo de crudo pesado de la cuenca Caguán-Putumayo.
- Realizar la evaluación de viabilidad financiera, eficiencia energética e impacto ambiental del sistema de Bombeo Electrosumergible empleado en un campo de crudo pesado de la cuenca Caguán-Putumayo.
- Proponer el sistema de levantamiento artificial óptimo para cada uno de los pozos seleccionados a partir de la evaluación ambiental y energética teniendo en cuenta la parte técnica y financiera de un campo de crudo pesado de la cuenca Caguán-Putumayo.

2. Fundamentos teóricos

2.1 Sistemas de Levantamiento Convencionales

2.1.1 Bombeo Electrosumergible

La historia del desarrollo de la bomba eléctrica sumergible se remonta al año 1911, en que Armais Arutunoff, de dieciocho años, lanzó la Dínamo Eléctrica Rusa de Arutunoff (la futura REDA). En 1916, se rediseño una bomba centrífuga para operar con su motor, lo que constituyó un hito trascendente que conduciría a la utilización de las bombas motorizadas de fondo de pozo. Después de inmigrar a los Estados Unidos de Norteamérica en 1923, Atutunoff desplegó el primer sistema de bombeo para campos petroleros en 1927 para Phillips Petroleum, ahora ConocoPhillips. Tres años después, se estableció REDA Pump Company en Bertlesville Oklahoma, EUA, donde actualmente continúa fabricando bombas. En 1988, REDA se convirtió en una división de Camco Imcorporated, que fue adquirida por Schlumberger en 1998. (Bates, y otros, 2004)

El bombeo electrosumergible (BES o ESP por sus siglas en inglés), es un sistema de levantamiento artificial que tiene como principio fundamental levantar el fluido desde el yacimiento hacia la superficie, mediante rotación centrifuga de los impulsores de la bomba, lo que permite que el fluido ascienda a través de las etapas de los impulsores y llegue a la superficie (estación recolectora), con suficiente energía.

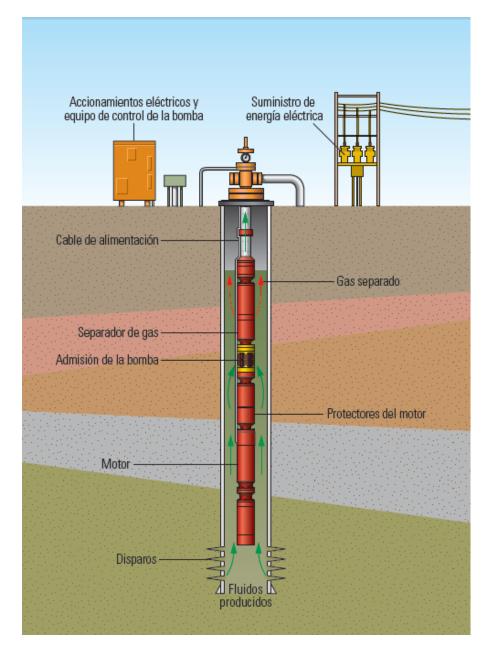
La potencia requerida por la bomba electrosumergible es suministrada por un motor eléctrico acoplado al eje de la bomba, el cual está ubicado en el fondo del pozo, y la corriente eléctrica requerida se suministra a través del cable de potencia el cual está fijado a la tubería de

producción que soporta el sistema de fondo y conecta el motor a la superficie (Arismendi & Santander, 2007)

Los sistemas de bombeo eléctrico sumergible se clasifican en componentes de fondo y componentes de superficie. La longitud total y el diámetro de los equipos ESP de fondo de pozo son diseñados sobre la base de la potencia necesaria para proporcionar la tasa de flujo deseada.

Tabla 1.Componente de Bombeo Electrosumergible.

Equipo de Superficie	Equipo de Subsuelo
Ensamblaje de cabeza de pozo	Unidad de bombeo centrifugo
Caja de empalme	Camisa de la bomba
Panel de controles	Separador de gas (opcional)
Transformador	Unidad sellante protectora del motor
Variador de frecuencia	Motor eléctrico
Cable eléctrico	Herramienta de monitoreo de fondo (opcional)


Nota. Tomado de (Martínez Durán & Useche Narváez, 2018). Evaluación de la huella de carbono producida por los sistemas de levantamiento artificial convencionales en un campo colombiano. Universidad Industrial de Santander.

ESP es un método de levantamiento artificial muy versátil y se puede encontrar en entornos operativos en todo el mundo. Pueden manejar un rango muy amplio de caudales de 200 a 120,000 bpd. (Baker Hughes Centrilift, 2008)

Este sistema de levantamiento artificial se aplica normalmente en dos tipos de pozos:

- 1. Pozo de alto corte de agua.
- 2. Pozos que producen fluidos altamente viscosos.

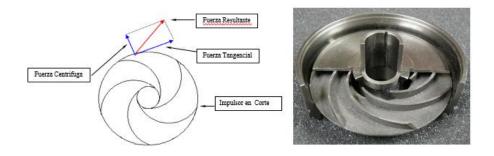
Figura 1.Configuración típica de una Bomba eléctrica sumergible.

Nota. Tomado de (Flatern, 2015). Examinando los pozos productores: Supervisión de los sistemas ESP.

Los componentes de una bomba eléctrica sumergible de fondo de pozo comprenden el motor, los protectores, las secciones de la bomba, las admisiones de la bomba, los cables de

alimentación, el equipo de tratamiento del gas y los sensores de fondo de pozo (no mostrados aquí). Los componentes de superficie incluyen el equipo de control de la bomba, tales como los variadores de velocidad y un suministro de energía eléctrica.

2.1.1.1 Equipo de Subsuelo.


2.1.1.1 Bomba Centrifuga. La Bomba Centrífuga debe su nombre a la capacidad que tiene de desplazar fluidos mediante la generación de fuerzas centrífugas. La Bomba Centrífuga multietapas se caracterizan por:

- Diámetro reducido.
- Gran cantidad de etapas.
- Diseño para altas cargas.

Esta trabaja por medio de la transferencia de energía del impulsor al fluido desplazándolo como si fuera un acelerador de partículas, esta energía o fuerza tangencial se produce en los alabes del impulsor cuando la bomba está en funcionamiento (girando).

Figura 2.

Impulsor.

Nota. Tomado de (Baker Hughes Company, 2009)

La bomba centrífuga trabaja por medio de la transferencia de energía del impulsor al fluido desplazado. La parte rotativa, el impulsor, genera fuerzas centrífugas que aumentan la velocidad del fluido (energía potencial más energía cinética).

La parte estacionaria, el difusor, dirige el fluido de la forma adecuada al siguiente impulsor.

Transforma parte de la energía cinética en energía potencial o presión. (Baker Hughes Company, 2009)

Figura 3.

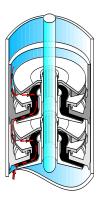
Transferencia de energía por medio del impulsor y el difusor en una bomba centrífuga.

Nota. Tomado de (Baker Hughes Company, 2009)

El fluido entra al impulsor por medio de un orificio interno, cercano al eje y sale por el diámetro exterior del impulsor. El difusor (en azul) dirige el fluido hacia el siguiente impulsor.

Figura 4.

Fluido a través del impulsor y difusor.



Nota. Tomado de (Baker Hughes Company, 2009

El corte transversal de la bomba muestra los difusores e impulsores ubicados en el alojamiento. Se superponen varias etapas (bombas multi-etapas) para obtener la altura de columna (TDH) deseada.

Figura 5.

Corte transversal de una bomba centrifuga.

Nota. Tomado de (Baker Hughes Company, 2009)

Existen tres tipos de impulsores:

- Flujo Radial: En bombas centrífugas de flujo radial, la bomba crea un diferencial de presión únicamente por la acción de la fuerza centrífuga sobre el fluido.
- Flujo Mixto: En bombas centrífugas de flujo mixto, la bomba crea un diferencial de presión por la acción combinada del impulsor y de la fuerza centrífuga sobre el fluido.
- Flujo Axial: En bombas centrífugas de flujo axial, la bomba crea un diferencial de presión únicamente por la acción del impulsor.

La diferencia entre estos tres tipos de impulsores está definida por los ángulos del álabe en el impulsor y el tamaño y la forma de los pasajes internos para el flujo.

Un impulsor de flujo mixto tiene los ángulos de los álabes cercanos a 45 grados, los cuales son usualmente encontrados en las bombas para altas tasas de flujo.

Figura 6.

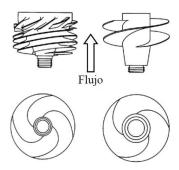
Impulsor de flujo mixto con ángulos de los álabes cercanos a 45°

Nota. Tomado de (Schlumberger, 2006)

Los impulsores radiales(panqueca) tienen los ángulos cercanos a 90 grados, los cuales son encontrados usualmente en bombas de bajas tasas de flujo.

Figura 7.

Impulsor de flujo radial con ángulos de los álabes cercanos a 90°.

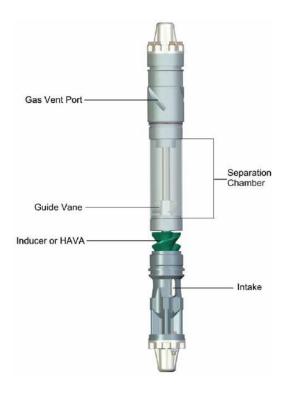


Nota. Tomado de (Schlumberger, 2006)

Los impulsores axiales tienen una geometría diferente y se pueden ver como una forma de hélice.

Figura 8.

Impulsor de flujo axial.


Nota. Tomado de (Schlumberger, 2006)

2.1.1.1.2 Separador de gas. En los pozos con alta relación gas-petróleo, los separadores de gas reemplazan las tomas estándar de la bomba y ayudan a mejorar el rendimiento de la bomba al separar una porción del gas libre antes de que entre en la primera etapa. Esto ayuda a eliminar el bloqueo de gas y a ampliar el rango de aplicación de los sistemas ESP.

El separador rotativo de gas ESP (Figura 5-1) está formado por los siguientes componentes principales:

- Puerto de ventilación de gas
- Paleta guía
- Inductor o sinfín de paleta de alto ángulo (patentado)
- cámara de separación
- Ingesta
- eje

Figura 9.Componentes del Separador de Gas ESP.

Nota. Tomado de (Baker Hughes Centrilift, 2008)

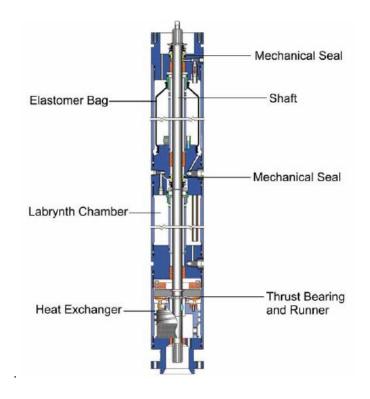
2.1.1.1.3 Sello. La sección del sello conecta el eje del motor a la toma de la bomba o al eje del separador de gas. Las secciones de sello también realizan las siguientes funciones vitales:

- Proporciona un área para la expansión del volumen de aceite del motor de la unidad.
- Iguala la presión de la unidad interna con la presión del anillo del pozo
- Aísla el aceite de motor limpio de los fluidos de pozo para evitar la contaminación.
- Soporta la carga de empuje del eje de la bomba.

Las secciones de sello están formadas por los siguientes componentes principales:

Sellos mecánicos

• Cojinete de empuje


• Bolsa (s) de elastómero

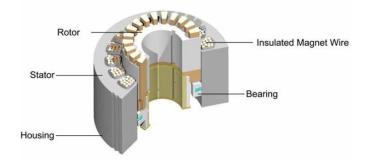
• Intercambiador de calor

• Cámara (s) de laberinto

Figura 10.

Componentes del sello ESP

Nota. Tomado de (Baker Hughes Centrilift, 2008)


2.1.1.1.4 *Motor*. El propósito principal de un motor es convertir la energía eléctrica en movimiento que hace girar el eje. El eje está conectado a través del sello y el separador de gas y hace girar los impulsores de la bomba.

El funcionamiento del motor de inducción se debe, al energizar el estator que produce un flujo magnético giratorio, de magnitud y velocidad constante. En el rotor se inducen polos magnéticos que siguen en su giro al flujo del estator. El voltaje que se aplica a los embobinados del estator, es un voltaje de excitación de frecuencia constante y potencial constante y el voltaje que se aplica al rotor es un voltaje inducido de frecuencia y potencial variables que se produce como consecuencia de la velocidad del rotor con respecto a la velocidad síncrona. Los motores eléctricos utilizados para la operación de las bombas sumergibles son trifásicos tipo de jaula de

ardilla, de dos polos. Estos motores se llenan con un aceite mineral con alta rigidez dieléctrica. El voltaje de operación de estos motores oscila entre los 230 y los 5000 volts. El amperaje puede variar entre los 12 y los 200 Amperes. (Ramírez, 2004)

Figura 11.

Corte de motor ESP.

Nota. Tomado de (Baker Hughes Centrilift, 2008)

2.1.1.1.5 Sensor de fondo de pozo. Los sensores de fondo de pozo miden parámetros de pozo y proporcionan datos críticos para mejorar la eficiencia y confiabilidad del sistema ESP ofreciendo transmisión de datos digitales, eliminando la interferencia de la señal que puede causar información inexacta y la pérdida de datos de fondo de pozo. Además de esto, es capaz de soportar presiones y temperaturas altas.

Este sensor va conectado al motor de fondo por medio de un cable de alimentación y un cable de señal. Se alimenta de pulsos de corriente continua de +- 120 Voltios, cuando la señal es sensada por el anillo de presión es traducida a señal eléctrica y enviada a través del cable de potencia del sistema a superficie, donde es aislada de la corriente alterna en el panel de choque y esta señal es enviada al panel de control. (Ramírez, 2004)

Figura 12.

Sensor Centinel +TM.

Nota. Tomado de (Baker Hughes Centrilift, 2008)

2.1.1.1.6 Clable ESP. El cable Centrilift ESP es el enlace crítico entre el equipo de fondo de pozo y la fuente de energía. La potencia se transmite al motor sumergible mediante la unión de un cable de alimentación eléctrica ESP trifásico especialmente construido a la tubería de producción. Este cable debe ser de construcción resistente para evitar daños mecánicos, y debe poder retener sus propiedades físicas y eléctricas cuando se expone a líquidos y gases calientes en pozos petroleros.

Los cables de Centrilift se construyen en configuraciones redondas y planas. La mayoría de los cables están compuestos por al menos cuatro componentes; Un conductor, aislamiento, chaqueta y armadura.

Figura 13.Corte de cable plano y redondo.

Tomado de (Baker Hughes Centrilift, 2008)

2.1.1.2 Equipo de Superficie.

2.1.1.2.1 Unidad de velocidad variable ESP. Los convertidores de velocidad variable Centrilift (VSD) permiten a los operadores variar el rendimiento de ESP controlando la velocidad del motor. El control de la velocidad del motor puede reducir la temperatura del motor, mejorar las capacidades de manejo de gas ESP, controlar la extracción del pozo, ajustar los ESP a las condiciones cambiantes del pozo, disminuir el estrés del sistema en el arranque, maximizar los beneficios del monitoreo de fondo de pozo y mejorar los armónicos del sistema. Están compuestos por:

- Control del sistema (incluye GCS Electrospeed CITIBus placa de control del sistema, pantalla de gráficos de fuente de alimentación y módulo de expansión)
 - Convertidor
 - DC BUS Link
 - Inversor

Figura 14.

Componentes del sistema de control gráfico (GCS).

Nota. Tomado de (Baker Hughes Centrilift, 2008)

El controlador del motor del sistema de control de gráficos Centrilift (GCS) proporciona protección, monitoreo y control para bombas eléctricas sumergibles.

Figura 15.

Pantalla del sistema de control gráfico (GCS).

Nota. Tomado de (Baker Hughes Centrilift, 2008)

2.1.1.2.2 Panel de control ESP (velocidad fija). Los paneles de control Electrostart ™ de Centrilift son paneles de bomba de voltaje completo diseñados específicamente para su uso con sistemas de bombeo sumergible eléctrico (ESP). Los cuadros de distribución de arranque eléctrico incluyen una desconexión con fusible, un contactor de vacío y un transformador de potencia de control de rango completo alojado en un gabinete NEMA 3R con compartimentos separados de alto y bajo voltaje.

El panel de control (arrancador en línea) se compone de un arrancador de motor, un circuito de estado sólido para protección contra sobrecarga y subcarga, un interruptor de desconexión manual o disyuntor, un circuito de retardo de tiempo y un amperímetro de registro. Muchos sistemas de control tienen equipos de superficie para usar con equipos de monitoreo de presión y temperatura del fondo del pozo instalados dentro del gabinete del controlador del motor. Se proporcionan fusibles para protección contra cortocircuitos.

Figura 16.

Panel de control Centrilift Electrostart ESP.

Nota. Tomado de (Baker Hughes Centrilift, 2008)

2.1.1.3 Equipo de Apoyo.

2.1.1.3.1 Transformador. La energía eléctrica generalmente distribuida en un campo petroleros es un voltaje intermedio (6,000 voltios o más). Dado que el equipo ESP funciona a voltajes entre 250 y 4,000 voltios, se requiere transformación de voltaje.

Los transformadores están disponibles en tres unidades monofásicas o en una configuración trifásica única. Los transformadores utilizados en un campo petrolero son unidades autoenfriadas llenas de aceite. Estas contienen una cantidad sustancial de derivaciones de voltaje secundario que permiten una amplia gama de voltajes de salida. Esto es necesario para ajustar el voltaje de la superficie para tener en cuenta la caída de voltaje del cable que ocurre debido a las profundidades de configuración.

2.1.1.3.2 Caja de empalme. Una caja de conexiones (caja de ventilación) realiza tres funciones. Primero, proporciona un punto para conectar el cable de alimentación del controlador al cable de alimentación del pozo. En segundo lugar, proporciona un respiradero a la atmósfera para el gas que podría migrar por el cable de alimentación sumergible.

Finalmente, permite puntos de prueba fácilmente accesibles para verificaciones eléctricas de equipos de fondo de pozo.

2.1.1.3.3 Ensamblaje de Cabeza de pozo. La cabeza del pozo soporta el peso del equipo subterráneo y mantiene la presión anular de la superficie del pozo. Debe estar equipado con un bonete de cabeza de tubo o empaquetadura para proporcionar un sello positivo alrededor del cable y el tubo (o alimentar a través del mandril).

Hay varios paquetes disponibles de los fabricantes de boca de pozo. La compensación más alta puede soportar presiones anulares de hasta 5,000 psi.

2.1.1.3.4 La válvula de retención. Cuando se apaga un ESP, el fluido en el tubo de producción caerá nuevamente a través del sistema ESP. A medida que el fluido pasa a través de la entrada, provoca la rotación inversa del eje. Si la unidad se enciende mientras el eje está en rotación inversa, causará fallas eléctricas o daños mecánicos al equipo. Una válvula de retención instalada dos o tres juntas sobre la bomba evita que el fluido fluya hacia abajo a través del sistema ESP eliminando el riesgo de operar en retroceso.

En aplicaciones donde es posible el bloqueo de gas, la válvula de retención se puede instalar cinco o seis juntas por encima del conjunto de la bomba. Esta instalación permite que una columna más grande de fluido fluya de regreso a través de la bomba en caso de una parada. El mayor volumen de fluido tiene una mayor probabilidad de romper un bloqueo de gas en la bomba.

2.1.1.3.5 Válvula de drenaje. Cuando se usa una válvula de retención, se recomienda instalar una válvula de drenaje para evitar tirar de una cadena de tubería húmeda. La válvula de drenaje está instalada encima de la válvula de retención. Una válvula de drenaje instalada sola no es necesaria ya que el fluido en el tubo se drenará a través de la bomba mientras tira.

Si no se usa una válvula de retención, se debe dejar suficiente tiempo para que los fluidos drene a través de la entrada de la bomba antes de reiniciar el motor. Se recomienda un mínimo de 30 minutos para la mayoría de los pozos.

2.1.1.3.6 Relé de retroceso. En algunas aplicaciones ESP, la instalación de una válvula de retención no sería práctica. Por ejemplo: si el pozo contiene grandes cantidades de incrustaciones, arena o asfáltenos, puede ser conveniente bombear el fluido, ácidos u otros químicos producidos por el tubo. Esta solución no sería posible con una válvula de retención instalada en la cadena del tubo. En cambio, los dispositivos electrónicos se utilizan para detectar una bomba de retroceso. La unidad de relé de giro inverso detecta la energía que genera el motor a medida que el eje gira en reversa. Dado que la unidad está instalada en el controlador, evita que el controlador vuelva a estar en línea hasta que se detenga la rotación del eje.

2.1.1.3.7 *Centralizador*. Los centralizadores se utilizan en aplicaciones ESP para colocar el equipo en el centro del pozo. Esto es especialmente útil en pozos desviados para eliminar daños externos y asegurar un enfriamiento adecuado del equipo. Hay varios centralizadores disponibles diseñados para proteger el cable ESP y evitar daños en el cable debido al roce.

En entornos corrosivos, se utilizan recubrimientos protectores en la carcasa exterior del equipo ESP. Los centralizadores evitan daños mecánicos al revestimiento durante la instalación del equipo. (Baker Hughes Centrilift, 2008)

2.1.2 Bombeo Mecánico

Es uno de los métodos más antiguos y usados a nivel mundial. Este sistema de levantamiento artificial puede producir tanto crudos pesados y extrapesados, como también medianos y livianos.

El método consiste en la instalación de una bomba de subsuelo de acción reciprocante que es abastecida con energía transmitida a través de una sarta de cabillas; esta energía proviene a su vez de un motor eléctrico o de combustión interna el cual moviliza la unidad de superficie mediante un sistema de engranajes y correas (Escalante, 2016)

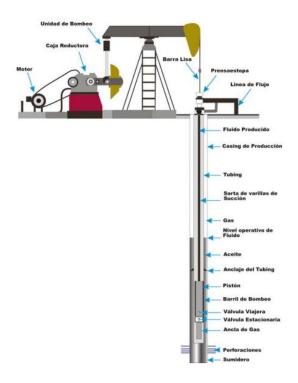
 Tabla 2.

 Clasificación de las unidades de Bombeo Mecánico

Tipo de Unidad	Punto de Apoyo	Mecanismos de Contrabalance
Convencional	Punto medio del balancín	Por contrapeso
Neumática	Extremo delantero del balancín	Por aire
Mark II	Extremo trasero del balancín	Por contrapeso

Nota. Tomado de (Martínez Durán & Useche Narváez, 2018). Evaluación de la huella de carbono producida por los sistemas de levantamiento artificial convencionales en un campo colombiano. Universidad Industrial de Santander.

El uso del sistema de bombeo mecánico es simple, adicionalmente su rango de aplicabilidad es amplia y variada, pero también es limitado debido a parámetros como profundidad, producción de sólidos y caudales de gas.


Tabla 3.Componentes del Bombeo Mecánico

Equipo de Superficie	Equipo de Subsuelo	
Base de la unidad	Varillas de bombeo	
Generador de potencia	Bomba de subsuelo	
Convertidor de potencia	Ancla de gas (opcional)	
Balancín		
Unidad de contrabalance		
Barra Lisa		
Instalación de la barra lisa		
Equipo de cabeza de pozo		
Unidad de contrabalance Barra Lisa Instalación de la barra lisa		

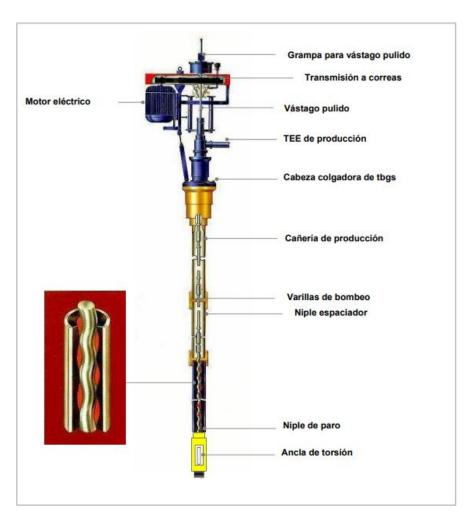
Nota. Adaptado de Muñoz, A y Torres, E (2007). Evaluación técnica de las estrategias de levantamiento artificial implementadas en campos maduros. Diseño de una herramienta software de selección. Universidad Industrial de Santander.

Figura 17.

Componentes del Sistema de Bombeo Mecánico.

Nota. Tomado de (Muñoz Rodríguez & Torres Torres , 2007). Evaluación Técnica De Las Estrategias De Levantamiento Artificial Implementadas En Campos Maduros. Diseño De Una Herramienta Software De Selección. Tesis de Grado. Universidad Industrial de Santander.

2.1.3 Bombeo por Cavidades Progresivas (PCP)


El bombeo por cavidades progresivas o PCP son máquinas rotativas de desplazamiento positivo, compuestas por un rotor metálico, un estator (recubierto internamente de un elastómero), un motor y un sistema de acoples flexibles. El efecto de bombeo se obtiene a través de cavidades sucesivas e independientes que se desplazan desde la succión hasta la descarga de la bomba a medida que el rotor gira dentro del estator. (Rueda Perdomo, 2015)

Existen dos variaciones diferentes de los sistemas de bombeo de cavidad progresiva. Primero está el sistema eléctrico sumergible de bombeo de cavidad progresiva (ESPCP). El segundo es un sistema de bombeo de cavidad progresiva impulsado por varillas (RDPCP). La bomba es común en ambos sistemas.

Los volúmenes de fluido más altos se manejan aumentando el tamaño de la cavidad. La velocidad del fluido está controlada por el paso de la longitud del estator. (Baker Hughes Centrilift, 2008)

Figura 18.

Componentes de un sistema PCP.

Nota. Tomado de Hirschfeldt, M. (2008). Manual De Bombeo De Cavidades Progresivas.

Comparado con la eficiencia total de otros sistemas, el bombeo por cavidades progresivas posee una de las mejores (entre el 50% y el 60%), así mismo, permite la producción de fluidos altamente viscosos, es resistente a la abrasión y adicionalmente requiere poco espacio para su funcionamiento (en comparación con el bombeo mecánico).

Tabla 4.Componentes del bombeo por cavidades progresivas

Equipo de superficie	Equipo de subsuelo
Motor	Varillas de bombeo
Sistemas de correas y poleas	Centralizadores
Cabezal de rotación	Estator y elastómero
Stuffing box	Rotor
Sistema de frenado	Niple de paro
	Ancla de torsión

Nota. Adaptado de Pérez Correa, J. (2017). Análisis de variables de producción para la selección de sistemas de levantamiento artificial adecuados para la producción de crudos pesados. Monografía. Universidad Industrial de Santander.

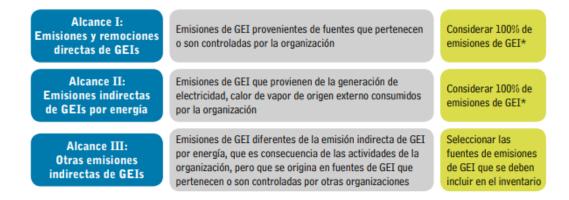
2.2 Uso de la Energía y Huella de Carbono

A medida que los años avanzan vemos el aumento del uso de energía alrededor del mundo en donde actualmente se espera que se inicie un uso más eficiente de esta. Se debe tener claro que, aunque el aprovechamiento eficiente de la energía contribuya a la disminución del incremento de las emisiones de gases de efecto invernadero, el progreso de los países en vía de desarrollo inevitablemente conllevará a un gran aumento de la energía total generada y consumida en todo el mundo.

Los Gases de Efecto Invernadero (GEI) son aquellos gases presentes en la atmósfera que contribuyen al efecto invernadero. Son de origen natural y antropogénico (resultado de la

actividad humana). Se entiende por efecto invernadero, el proceso por el que la radiación térmica emitida por la atmósfera es absorbida por los gases presentes e irradia en todas las direcciones. (Bunyard, 2010)

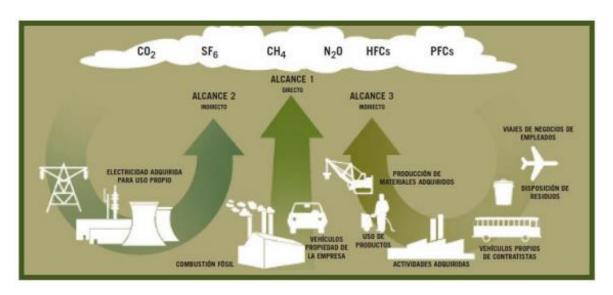
El dióxido de carbono (CO2) es uno de los GEI de mayor impacto. La huella de carbono es una herramienta que contribuye a la reducción de emisiones de CO₂ en productos y organizaciones en el marco de la mitigación del cambio climático. Además, contribuye a la creación de un mercado de productos y servicios de bajo carbono que da respuesta a la demanda social actual, mientras que a su vez sirve para identificar oportunidades de ahorro de costes en las organizaciones. También será una herramienta importante a la hora de demostrar a terceros los compromisos de la organización con la responsabilidad social a través de sus requisitos en mitigación del cambio climático.


En otras palabras, la huella de carbono es un parámetro utilizado para describir la cantidad de emisiones de GEI asociadas a una empresa, evento, actividad, o al ciclo de vida de un producto o servicio, de forma que se pueda determinar su contribución al cambio climático, expresándose en toneladas de CO2 equivalente (Ambrós Atance, Calabria Marín, Ripoll Uranga, & Román Luengo, 2011)

Existen dos tipos de emisiones cuando se desarrolla una actividad: Emisiones directas liberadas en el lugar donde se produce dicha actividad y las Emisiones indirectas causadas por el desarrollo de la actividad pero estas provienen de fuentes que no están en el lugar, por ejemplo, el uso de la electricidad.

De acuerdo co la norma ISO 14064-1, las emisiones se pueden clasificar en tres categorías (Alcanse 1, 2 y 3 según GHG Protocol) como se evidencia en la *Figura 19*.

Figura 19.


Clasificación de emisiones según GHG Protocol.

Nota. Tomado de "Guía metodológica para la aplicación de la norma UNE-ISO 14064-1:2006 para el desarrollo de inventarios de Gases de Efecto Invernadero en organizaciones"

Figura 20.

Clasificación de emisiones de GEI y sus fuentes.

Nota. Tomado de GHG Protocol, WRI, 2009.

La implementación de estrategias que reduscan las emisiones GEI y mitiguen el calentamiento global hace que la medición de la huella de carbono genere una perpectiva del

impacto ambiental con la capacidad de modificar y crear productos o servicios amigables con el medio ambiente.

2.2.1 Marcos Metodológicos Internacionales

En los últimos años se han desarrollado múltiples metodologías para la medición de emisiones de GEI y existen diversos referenciales y normas para el cálculo de huella de carbono, pero en la actualidad no se cuenta con un marco metodológico común y uniforme de medición de las emisiones de GEI de forma voluntaria que se adapten a proyectos específicos y respondan a criterios y procesos de aprobación propios (Ambrós Atance, Calabria Marín, Ripoll Uranga, & Román Luengo, 2011).

Sin embargo, (Ambrós Atance, Calabria Marín, Ripoll Uranga, & Román Luengo,2011) destaca los marcos metodológicos que tienen cierto reconocimiento e influencia sobre los avances actuales y que apuntan concretamente al cálculo de la Huella de Carbono de productos, compañías y eventos.

- a) Huella de carbono para empresas
 - Greenhouse Gas Protocol (GHG Protocol): Estándar Corporativo de Contabilidad y Reporte del Protocolo de GEI.
 - ISO 14064: Gases de Efecto Invernadero (GEI).
- **b**) Huella de carbono para productos
 - Greenhouse Gas Protocol (GHG Protocol): Estándar de Contabilidad y Reporte del Ciclo de Vida de Productos del Protocolo de GEI.
 - Norma PAS 2050: Norma para la Gestión de Huella de Carbono.
 - ISO 14067: Huella de Carbono de Productos.
- c) Demostración de la Neutralidad de Carbono

• Norma PAS 2060: Neutralización y Reducción de Huella de Carbono.

2.2.2 Calculo de la Huella de Carbono

La huella de carbono se define como la cantidad total de GEIs causados directa o indirectamente por una organización, un producto o un servicio. Es por tanto un inventario de GEIs, que se mide en toneladas de CO2 equivalente y que tiene en cuenta los seis tipos de gases considerados en el Protocolo de Kioto (CO2, CH4, N2O, PFCs, HFCs y SF6) (Ihobe, 2012)

Para el cálculo de la huella de carbono se han establecido según la norma UHNE-ISO 14064-1:2006 cinco pasos generales como se evidencia en la *Figura 21*.

Figura 21.

Pasos metodológicos para el cálculo de la huella de carbono.

Nota. Tomado de "Guía metodológica para la aplicación de la norma UNE-ISO 14064-1:2006 para el desarrollo de inventarios de Gases de Efecto Invernadero en organizaciones"

La metodología para el calculo de la huella se tomara de acuerdo a lo establecido para la cuantificación de emisones de GEI la cual se evidencia en la ecuación (1).

$$Huelladecarbono = Datodelaactividad \times factordeemisi\'on$$
 (1)

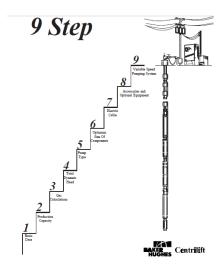
Donde:

Dato de actividad: Define el grado o nivel de la actividad generadora de emisiones de GEI, kWh.

Factor de emisión (FE): Cantidad de GEI emitidos por cada unidad de "dato de actividad" (varia en funcion de la actividad realizada).

Sin embargo, si desea saber más acerca de la metodología que se aplica en este trabajo para el calculo de la huella de carbono, dirijase al Apendice A.

2.3 Software y Metodologías Empleados

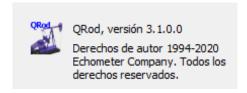

2.3.1. Metodología de los 9 pasos de Baker Hugues (Bombeo electrosumergible)

Centrilift ha establecido un procedimiento de nueve pasos para la ayuda del diseño del sistema de bombeo sumergible adecuado para su pozo en particular. Los nueve pasos son:

- Paso 1 Data Básica: Recopilar y analizar todos los datos de los pozos que se utilizaran para el diseño.
- Paso 2 Capacidad de Producción: Determinar la productividad del pozo a la profundidad de asentamiento de la bomba a la tasa de producción deseada.
- Paso 3 Cálculos de Gas: Calcular los volúmenes de fluido, incluido el gas, en condiciones de entrada a la bomba.
 - Paso 4 Altura Dinámica Total: Determinar el requerimiento de descarga de la bomba.
- Paso 5 Tipo de Bomba: Seleccionar para una capacidad y altura determinadas, el tipo de bomba que tendrá la mayor eficiencia para el caudal deseado.
- Paso 6 Tamaño Óptimo de los Componentes: Seleccionar el tamaño óptimo de la bomba, el motor y la sección del sello y verificar las limitaciones del equipo.
 - Paso 7 Cable Eléctrico: Seleccione el tipo y tamaño de cable correctos.
- Paso 8 Accesorios y Equipos Opcionales: Seleccionar el controlador del motor, transformador, cabezal de tubería y equipo opcional.
- Paso 9 Sistema de Bombeo de Velocidad Variable: Para mayor flexibilidad operativa, seleccionar el sistema de bombeo sumergible de velocidad variable.

Figura 22.

Portada 9 Steps Baker Hughes.



Nota. Tomado del libro 9 Steps de Baker Hughes

2.3.2. Software Echometer QRod 3.1 (Bombeo Mecánico)

Figura 23.

Interface Software QRod 3.1.

Nota. Tomado de Software Echometer QRod 3.1.

Echometer Company es una corporación con sede en Texas dedicada al suministro de instrumentos, tecnología y capacitación para analizar y optimizar el rendimiento de los pozos de petróleo, agua y gas, esta compañía ha desarrollado el software QRod, el cual es el programa gratuito más ampliamente utilizado para el diseño del sistema de bombeo mecánico. Rrod le permite al usuario trabajar bien sea en español o en inglés, permitiendo así un fácil entendimiento y manejo del uso y resultados allí obtenidos.

Para trabajar con QRod se necesita de cierta información (**Tabla 5**), acerca del sistema de levantamiento y del yacimiento, para obtener las mejores especificaciones de operación.

Así mismo, el software brindará gráficos de las Cartas Dinagráficas, Velocidad del Pistón vs Posición y el Torque.

Tabla 5.Datos de entrada y salida del software QRod


Datos de entrada	Datos de salida	
Tipo de balancín	Caudal (100% eficiencia de la bomba)	
Profundidad de la bomba	Caudal (95% eficiencia de la bomba)	
Carrera del balancín	Varillas en cada sección	
Diámetro del pistón	Carga de las varillas en superficie	
Diámetro de la tubería	Capacidad (API) min del balancín	
Tipo de varillas	Capacidad mínima de potencia del motor	
Caudal deseado ó velocidad de bombeo	Potencia en barra pulida	
Corte de agua	Carga de la válvula viajera	
Gravedad del crudo	Carga válvula fija	
Presión de la tubería		
Diámetro de las barras		
Presión del revestidor		
Presión de entrada de la bomba ó Presión del		
yacimiento		
Índice de productividad		

Nota. Adaptado de Software Echometer QRod 3.1.

2.3.3. Software C-FER Technologies PC - PUMP (Bombeo por Cavidades Progresivas)

Figura 24.

Software C-FER Technologies PC - PUMP.

Nota. Tomado de Software C-FER Technologies PC - PUMP.

El software fue desarrollado como un proyecto de investigación para mejorar el bombeo por PCP al oeste de Canadá. PC-PUMP permite el diseño y análisis de este sistema de levantamiento artificial de una forma muy detallada, así mismo, no sólo brinda números sino gráficas detalladas para un mejor entendimiento.

3. Generalidades del Campo

3.1 Localización

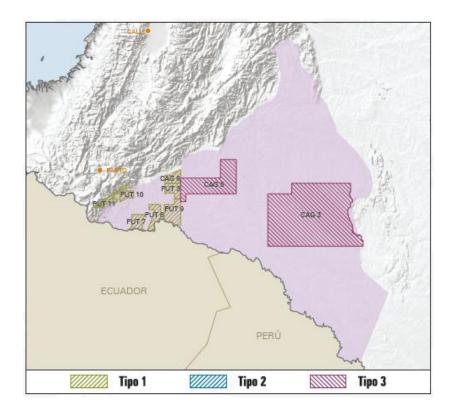
El campo en cuestión hace parte del bloque Suroriente (PUT 7) ubicado en la parte plana del Departamento del Putumayo en el municipio de Puerto Asís. El bloque limita con la frontera del Ecuador al sur a través del río San Miguel, extendiéndose hasta la altura de la población de Puerto Asís sobre el río Putumayo por el norte y se encuentra en un corredor vial que se extiende desde Puerto Vega hasta Teteye. Cuenta con un área de 50.399 Ha.

Este campo tiene 4 clúster asociados, dos ubicados en dirección a puerto vega y dos más ubicados en dirección hacia Teteye, así mismo, cuenta con una estación intermedia, en la que se

requieren de dos sistemas de transporte de flujo independientes para manejar los clústeres de los pozos.

Cada clúster tiene un manifold colector de prueba (4") y general (6"), los cuales redireccionan los flujos de los pozos hacia la línea de prueba y general en acero al carbón Sch40, A106/5L/B sin costura de 4 pulgadas y 6 pulgadas respectivamente.

En la estación del campo se realiza la recepción y tratamiento de los fluidos crudo, agua y gas, sin embargo, el agua es tratada e inyectada bajo esquema de recuperación secundaria.


3.2 Geología

La cuenca Caguán-Putumayo abarca una región de 110.304 km2 (al norte, Caguán y al sur, Putumayo), en el suroeste de Colombia. Limita al occidente con la Cordillera Oriental y al oriente con el Escudo de Guyana; al norte con la Serranía de la Macarena y al sur con el límite internacional con Ecuador. Esta cuenca comparte su historia geológica con la Cuenca de Oriente en Ecuador, como parte de una cuenca tipo antepaís (foreland). Las trampas presentes en las dos zonas son a grandes rasgos cabalgamientos, fallas de rumbo de alto ángulo con pliegues asociados y fallas ciegas en el piedemonte; fallas normales y acuñamientos en la zona de antepaís. El sello del sistema se ha identificado en intervalos arcillosos de las formaciones Caballos, Villeta/Macarena, Rumiyaco, Orteguaza, Arrayán y Serranía.

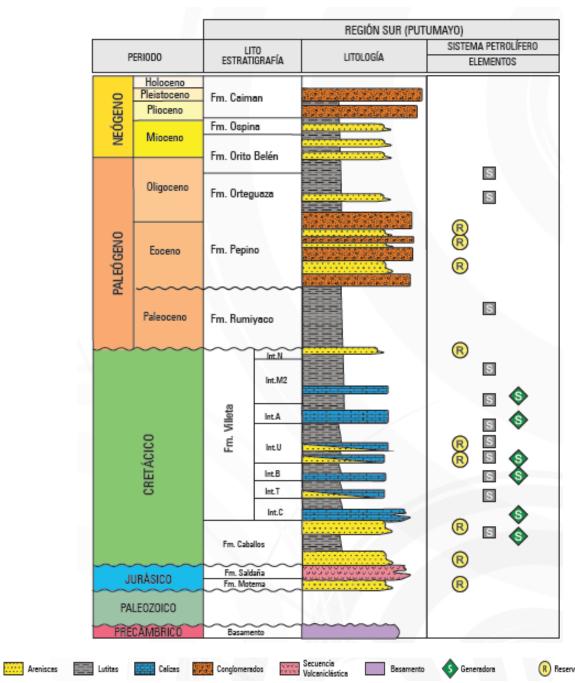
El área del bloque establece un volumen que se extiende verticalmente hacia abajo, hasta tocar la discordancia del Cretáceo; limita con la frontera del Ecuador al Sur a través del río San Miguel, extendiéndose hasta la altura de la población de Puerto Asís sobre el río Putumayo por el Norte.

Figura 25.

Bloques cuenca Caguán-Putumayo.

Nota. Tomado de Agencia Nacional de Hidrocarburos. "Open Round Colombia 2010. Cuenca Cagúan-Putumayo".

La columna estratigráfica (**Figura 26**) presente en el bloque está compuesta por una secuencia de sedimentos, cuyas edades están comprendidas entre el Jurásico y el Mioceno Medio, debido a que la parte superior de la sección corresponde al Mioceno Tardío – Reciente está erosionada.

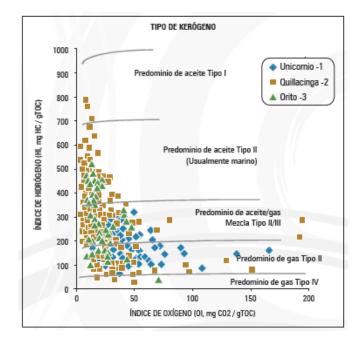

3.2.1 Roca Generadora

En el sector Putumayo, los intervalos generadores más estudiados se concentran en el Cretácico y corresponden a las Formaciones Villeta y Caballos con excelente potencial generador de hidrocarburos líquidos. (Rodríguez, y otros, 2009)

§ Sello

Figura 26.

Sección cronoestratigráfica del sector Putumayo al sur de la Cuenca Caguán-Putumayo donde se señalan los elementos del sistema petrolífero.



Nota. Tomado de Agencia Nacional de Hidrocarburos. "Open Round Colombia 2010. Cuenca

Cagúan-Putumayo".

Figura 27.

Diagrama de Van Krevelen para las rocas del sector Putumayo.

Nota. Tomado de Agencia Nacional de Hidrocarburos. "Open Round Colombia 2010. Cuenca Cagúan-Putumayo".

Geoquímica:

- Contenidos de Materia Orgánica (TOC) entre 7,34% y 13,36%.
- Potencial de hidrocarburos (S2) entre 18,45 y 42,80.
- %Ro entre 0,4% y 0,65%.
- Calidad de la materia orgánica Kerógeno Tipo II.
- La materia orgánica está entre inmadura y la fase de generación temprana.

3.2.2 Roca Reservorio

Las areniscas cretácicas de la Formación Caballos son el principal reservorio en la cuenca, especialmente cuando se desarrollan fallas de un desplazamiento mayor a 61 metros. Las porosidades van desde 10% a 16% y permeabilidades promedio de 50 md. Reservorios

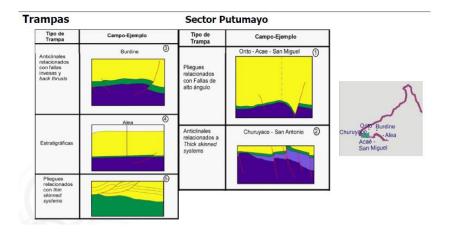
secundarios son encontrados en las areniscas de la Formación Villeta y los conglomerados de la Formación Pepino.

3.2.2.1 Formación Villeta. Su edad comprende el Cretáceo Superior formado por intercalaciones de sales negros, calizas micríticas y esparíticas y chert negro. Está dividida por siete intervalos definidos de acuerdo con sus características litológicas, de los cuales los denominados "N", "M2", "U" y "T", corresponden a los intervalos arenosas y sus espesores varían entre 7 y 66 pies (2 y 20 metros). El espesor total de la formación es de 1312 pies (400 metros) aproximadamente y su ambiente de depositación es marino. La Formación Villeta infrayace de manera discordante la Formación Rumiyaco y suprayace concordantemente la Formación Caballos. (Becerra Buitrago & Umbarila Moncaleano, 2017)

3.2.2.2 Formación Caballos. La edad de la formación está comprendida en el Cretáceo Inferior. Se compone de areniscas de grano grueso a conglomeráticas en la base y areniscas medianas a finas, con espesores variables entre 10 y 32 pies (3 y 10 metros). Esta formación representa el inicio de la transgresión marina en la cuenca. Su espesor varía entre 322 y 492 pies (98 y 150 metros) aproximadamente y su ambiente de depositación es continental-fluvial. La Formación Caballos infrayace de manera concordante a la Formación Villeta y suprayace discordantemente la Formación Saldaña. (Becerra Buitrago & Umbarila Moncaleano, 2017)

3.2.3 Roca Sello

Shales y niveles calcáreos cretácicos de la Formación Villeta son excelentes unidades de sello lateral y al tope. Hacia el piedemonte, es posible que fallas de cabalgamiento puedan actuar como sellos efectivos al poner en contacto las areniscas de la Formación Caballos con sedimentos más finos o rocas ígneo-metamórficas; sin desconocer el riesgo de estas últimas al


actuar como sello. Los shales de las formaciones Rumiyaco y Orteguaza también son sellos potenciales. (Rodríguez, y otros, 2009)

3.2.4 Trampas

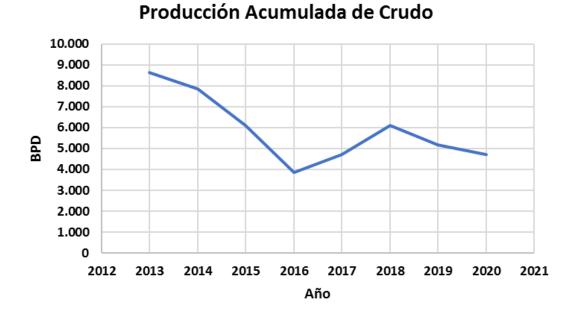
En la zona del Putumayo, las principales trampas son: fallas inversas de alto ángulo con pliegues asociados, anticlinales relacionados con fallamientos tipo thick skinned y anticlinales relacionados con fallas inversas y back thrusts. Para la zona del Caguán, las estructuras de entrampamiento se relacionan con pliegues formados por inversión de fallas normales, así como a pliegues de arrastre tipo fault propagation fold. En el área de antepaís, para la Cuenca Caguán Putumayo, las principales trampas son estratigráficas, debidas a acuñamientos de las secuencias cenozoicas contra el basamento. (Rodríguez, y otros, 2009)

Figura 28.

Trampas sector Putumayo.

Nota. Tomado de Agencia Nacional de Hidrocarburos. "Open Round Colombia 2010. Cuenca Cagúan-Putumayo".

Las características geoquímicas de la Formación Villeta y de la Formación Caballos como roca almacenadora y las trampas del pre-Mioceno y del Mioceno en sincronismo con un


importante evento de migración indican la alta prospectividad de esta cuenca. El potencial exploratorio de la Cuenca Caguán-Putumayo se estima entre 2200 MBP (alto) y 255 MBP (bajo).

3.3 Producción acumulada

La *Figura 29*, ilustra el comportamiento de la producción acumulada de petróleo del Campo en cuestión desde el año 2003 hasta febrero del presente año (fecha en que se para el campo inicialmente por problemas de comunidades y posteriormente hasta septiembre del presente año se restablece).

Figura 29.

Producción acumulada de petróleo para el Campo.

Nota. Adaptado de Agencia Nacional de Hidrocarburos. Estadísticas de producción por campo. Disponible en: https://www.anh.gov.co/Operaciones-Regal%C3%ADas-y-Participaciones/Sistema-Integrado-de-Operaciones/Paginas/Backup/Estadisticas-de-Produccion.aspx .

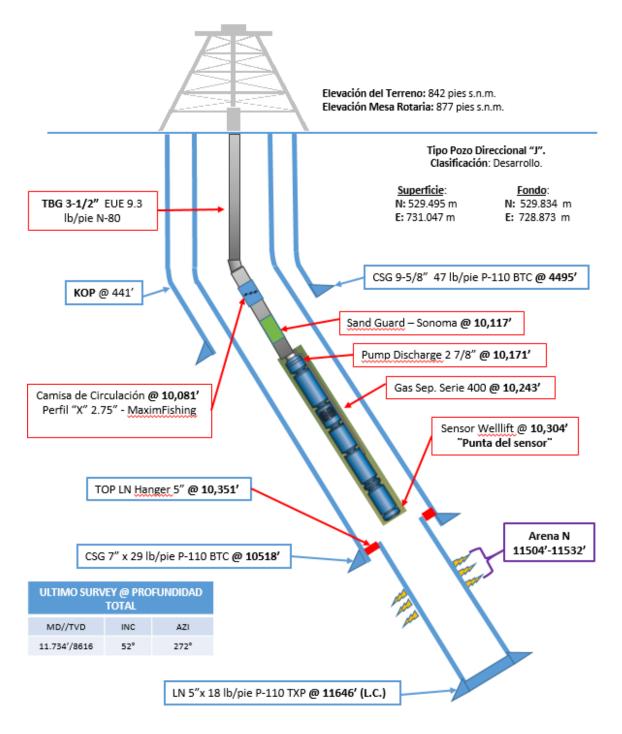
3.4 Propiedades petrofísicas y de los fluidos en el Campo

En la **Tabla 6**, se muestran los valores promedio de las principales propiedades del fluido que se encuentra en el Campo en cuestión.

Tabla 6.Propiedades de los fluidos del Campo.

PROPIEDAD	VALOR	UNIDADES
°API	17-19	°API
Densidad @60°F	0,9420	g/ml
BSW	60-65	%
Punto de Fluidez	20-40	°F
Punto de inflamación	40-50	°F
Viscosidad Dinámica @ 205°F	56	cPs
Salinidad	25000	PTBs
Sedimentos por Extracción	0,14	%
Gravedad del gas @ 14,7 psia	1,2522	
& 60°F		
Sedimentos por extracción	0,1	%

Nota. Adaptado de la base de la Operadora.


3.5 Sistema de Levantamiento empleado en el Campo

Todos los pozos pertenecientes al campo tienen un sistema de levantamiento artificial del tipo bombeo electro-sumergible ESP, de la compañía Baker Huges GI.

Las Bombas centrífugas multi-etapas ubicadas en el fondo del pozo y accionadas por motor eléctrico cuentan con un cableado eléctrico, tanto de potencia como de señales de fondo. Algunas bombas cuentan con separador de gas – en fondo – para mejorar la eficiencia de bombeo. A continuación, se esquematiza un ejemplo del estado mecánico típico para los pozos de este campo.

Figura 30.

Estado mecánico típico de pozos.

Nota. Tomado de la Información brindada por la operadora.

4. Casos de estudio, recopilación y evaluación de las variables operacionales de los pozos del campo

4.1 Selección de casos de estudio

Teniendo en cuenta que el agua de este campo es tratada e inyectada bajo esquema de recuperación secundaria, la operadora a cargo del campo a partir de marzo 2019, se propuso realizar una proyección del aumento de producción de crudo elevando el factor de recobro y creando una planta de tratamiento de agua. Partiendo de esto, en su plan de trabajo se realizó un análisis a cada uno de los pozos del campo para ver su viabilidad al ser pozos de inyección o producción. Además de esto, se analizaron cada uno de los equipos de sistema de bombeo electrosumergible y su capacidad para trabajar en los rangos proyectados.

A partir de este análisis, se propuso por parte de la operadora se trabajará con 3 pozos a los que se les había establecido un plan de Up-grade y eran considerados los más representativos debido a que presentaban algunas limitaciones en su capacidad volumétrica, manejo de gas, bomba de fondo, equipo de superficie, etc.

Definidos los casos de estudio, se procedió a revisar algunos screening para la comparación de los sistemas de levantamiento artificial que se diseñarían en este trabajo (Bombeo Mecánico, Bombeo Electrosumergible y Bombeo PCP).

4.2 Recopilación de las variables operacionales

Para realizar la selección y el diseño de un SLA es necesario contar con información confiable, especialmente la información relacionada con la capacidad del pozo. Emplear datos incorrectos puede terminar en una selección incorrecta de la bomba, sobrecargar el motor o producir a un caudal que genere drawdown muy altos y generar daños a la formación, por otro lado, se podría seleccionar una bomba no lo suficientemente grande como para generar la tasa de

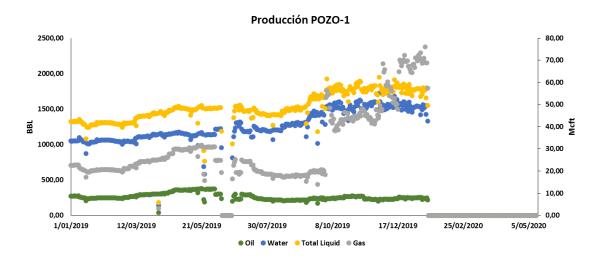
producción deseada, provocando una operación costosa e ineficiente. (CENTRILIFT, 1987). Por esta razón, para la recopilación de las variables operacionales la operadora facilito información de cada pozo (historial de producción, presiones, niveles, sistemas de levantamiento implementados, profundidad, diámetros de casing y tubing, entre otros), la cual se organizó para definir los parámetros base con los cuales haríamos el diseño de los SLA.

Teniendo en cuenta que la información dada es información confidencial, se procede a nombrar los casos de estudio de ahora en adelante como Pozo 1, Pozo 2 y Pozo 3. En la **tabla 7**, se muestran las variables operacionales recopiladas que se tendrán en cuenta para el diseño de los sistemas de levantamiento convencionales.

Para el análisis de la data de producción se graficó el comportamiento de producción de crudo, agua y gas a través del tiempo de cada uno de los casos de estudio.

Antes, es importante aclarar que el campo aumento su producción a partir del segundo semestre del 2019 y en el mes de febrero tuvo que parar completamente debido a problemas con comunidades y posteriormente continuar así hasta septiembre de 2020 por la presente situación mundial.

POZO 1. El pozo 1 se encuentra ubicado en el mismo cluster que el pozo 3, los cuales son beneficiados por la inyección secundaria de dos pozos que se encuentran en este mismo cluster. Su producción tanto de agua como de crudo aumento en el transcurso del año 2019. Se observa que entre el 1 de diciembre de 2019 y el 17 de enero de 2020 se obtuvo la producción más alta con un promedio de líquido total de 1777 Bls/día aproximadamente, un BSW promedio de 86,4% y un caudal de gas promedio de 64,65 Mcft.


Tabla 7.Propiedades de los casos de estudio

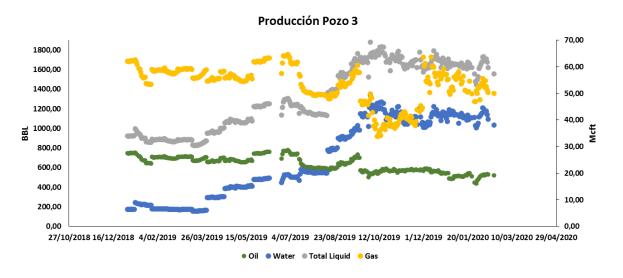
	POZO 1	POZO 2	POZO 3
PARÁ	METROS DE Y	ACIMIENTO	
Presión de Yacimiento (psi)	1350	1350	1350
Tasa de Producción promedio (Bls/d)	1784	1356	1648
Profundidad del Pozo (MD) (ft)	9447	10620	11452
Temperatura de Fondo (°F)	300	300	300
GOR (scf/stb)	268	103	103
BSW (%)	86,5	28,2	67,8
Presión de Burbuja (psi)	580	580	580
PA	RÁMETROS D	EL POZO	
Diámetro de Casing (in OD)	7	7	7
Diámetro de Tubing (in OD)	3 1/2	3 ½	3 ½
Intervalos Cañoneado (ft)	9274 a 9305	10353 a 10412,5	11208,5 a11217,5 11221 a 11237 11238,5 a 11243
Tipo de completamiento	Simple	Simple	Simple
Tipo de recobro	Secundario	Secundario	Secundario
Presencia de fluidos corrosivos	No	No	No
Contenido de arena abrasiva	No	No	No
(ppm) Grado de Inclinación pozo	1,0	110	110
(Grados con respecto a la	31,3	37,4	46
(Grados con respecto a la vertical)	31,3	37,4	40
Presencia de contaminantes	No	No	No
Tipo de locación	On Shore	On Shore	On Shore
PRUEBA DE SONOLOG NIVE	L DE FLUIDO -	- PARÁMETROS OF	PERACIONALES
Frecuencia (Hz)	65,3	59,5	62
THP (psig)	105	392	120
Profundidad de Nivel de Líquido MD (ft)	6701	8174	8322
Profundidad de Entrada de la Bomba MD (ft)	9004,1	10205,5	11107,8
PIP (psi)	825	626,5	789
Sumergencia de la Bomba (ft)	2032	1585,6	1925

Nota. Adaptada por los autores de base de datos de la operadora.

Figura 31.

Producción a través del tiempo del POZO 1.

POZO 2. El pozo 2 se encuentra ubicado en un cluster diferente al pozo 1 y 3 y es beneficiado por la inyección de un pozo que se encuentra ubicado en este mismo cluster. Su producción tanto de agua como de crudo durante el periodo de enero a septiembre de 2019 presenta un comportamiento casi constante. Sin embargo, a partir del mes de septiembre de 2019 su producción aumento drásticamente, alcanzando su producción máxima de líquido a finales de enero y principios de febrero de 2020 con un promedio de 1576 Bls/día aproximadamente.


Figura 32.Producción a través del tiempo del POZO 2.

POZO 3: El pozo 3 se encuentra ubicado en el mismo cluster que el pozo 1, los cuales son beneficiados por la inyección secundaria de dos pozos que se encuentran en este mismo cluster. Su producción tanto de agua como de crudo aumento en el transcurso del año 2019. Se observa que para finales del año 2019 y principios del año 2020 se obtuvo la producción más alta con un promedio de líquido total de 1680 Bls/día aproximadamente, un BSW promedio de 67% y un caudal de gas promedio de 48 Mcft.

Figura 33.

Producción a través del tiempo del POZO 3.

4.3 Determinación de propiedades y variables adicionales

A partir de la información suministrada por la operadora, fue necesario realizar algunos cálculos de propiedades de campo con el fin de darle continuidad al diseño de los sistemas de levantamiento. A continuación, se observan los cálculos de dichas propiedades.

4.3.1 Gravedad específica, densidad del aceite y densidad de la mezcla

Para determinar la gravedad especifica del aceite se usó la ecuación (1) de API:

$$GE = \frac{141.5}{131.5 + API^{\circ}}$$
 (2)

Teniendo en cuenta la definición de gravedad específica y tomando como referencia para el agua 8.33 (lb/gal) se determinó la densidad del aceite así:

$$\delta o = GE * 8.33 \tag{3}$$

De igual forma, para determinar la densidad de la mezcla (δm) , se relacionó la densidad del agua con la densidad del crudo (δo) con el porcentaje de agua presente en el fluido, de la siguiente manera:

$$\delta m = \delta o * (1 - BSW) + 8.33 * (BSW)$$
 (4)

En la **Tabla 8**, se evidencia los resultados obtenidos de las propiedades mencionadas anteriormente.

Tabla 8.Gravedad específica, densidad del aceite y densidad de la mezcla

Propiedades	POZO 1	POZO 2	POZO 3
Geo	0,95	0,95	0,94
Densidad del aceite (lbs/gal)	7,88	7,87	7,82
Densidad de la mezcla (lbs/gal)	8,27	8,00	8,16

4.3.2 Relación Gas - Petróleo en solución (Rs), Factor de volumen de gas (Bg) y Factor de formación (Bo)

Como la relación Gas - Petróleo en solución (Rs), el factor de volumen de gas (Bg) y el factor de volumen de formación (Bo) no están disponibles en los datos brindados por la operadora, fueron calculados a partir de las siguientes correlaciones multifase de Standings que se adaptan a las condiciones de los pozos y se pueden observar en la **Tabla 9.**

$$R_s = Y_g \left(\frac{P_b}{18} \times \frac{10^{0.0125 \times ^{\circ} API}}{10^{0.0009 \, \text{kT}(^{\circ} F)}}\right)^{1.2048}$$
 (5)

Donde:

R_s: Relación Gas – Petróleo en solución, sft/stb

Yg: Gravedad Especifica del gas

P_{b:} Presión de Burbuja, psi

T: Temperatura de fondo de pozo, °F

$$B_g = 5.04 \frac{ZT}{P} \tag{6}$$

Donde:

Bg: Factor Volumetrico de Gas, Bbl/scf

Z: Factor de compressibilidad del gas (0.81 a 0.91)

T: Temperatura de fondo de pozo, Rankine (460+°F)

P: Presión de sumergencia, psi

El factor volumetrico de formación Bo, representa el incremento de volumen que ocupa un barril de petróleos en la formación en comparación con un barril estandar. Se determino así:

$$B_O = 0.972 + 0.000147 \, F^{1.175} \tag{7}$$

Donde:

$$F = R_s \left(\frac{Y_g}{Y_o}\right)^{0.5} + 1.25T \tag{8}$$

T: Temperatura de fondo de pozo, °F

Tabla 9.

Relación Gas - Petróleo en solución (Rs), Factor de volumen de gas (Bg) y Factor de formación (Bo)

Propiedades	POZO 1	POZO 2	POZO 3
R _s (sft/stb)	95	68	62
Bg (Bl/Mstb)	3,86	22,46	6,17
F	501	451	441
B_o (Bl/stb)	1,19	1,17	1,16

4.3.3 IPR, Índice de productividad

La curva IPR es la representación gráfica de las presiones fluyentes, Pwf, y las tazas de producción de líquido que el yacimiento puede aportar al pozo para cada una de dichas presiones. Es decir, existe una taza de producción de líquido ql, que se puede obtener de la definición de índice de productividad. (Maggiolo, 2008)

En los 3 casos de estudio se observó que el yacimiento es subsatuarado por lo que existe un flujo de una fase liquida para Pwf > Pb y flujo bifásico para Pwf < Pb. En estos casos la IPR tendrá un comportamiento lineal para Pwf mayores o iguales a Pb y un comportamiento tipo Vogel para Pwf menores a Pb.

Debido a que el yacimiento en estudio es subsaturado las IPR de cada caso constan de dos secciones (fase liquida y flujo bifásico) como se mencionó antes, por esto, se tuvieron en cuenta las siguientes ecuaciones particulares en cada caso:

En la parte recta de la IPR, $q \le qb$ ó Pwf \ge Pb, se cumple:

$$q = J * (Py - Pwf) \tag{9}$$

Donde, J se podía determinar de dos maneras:

1) Si se conocía una prueba de flujo (Pwf, ql) donde la Pwf > Pb.

$$J = \frac{q(prueba)}{Py - Pwf(Prueba)}$$
 (10)

2) Si se disponía de suficiente información se puede utilizar la ecuación de Darcy:

$$J = \frac{0,00708 Ko * h}{\mu o \beta o \left\lceil \frac{re}{rw} \right\rceil - 0.75 + S}$$

$$\tag{11}$$

En los tres casos, no se contaba con la suficiente información para utilizar la ecuación de Darcy, por lo que el J se determinó de la primera forma.

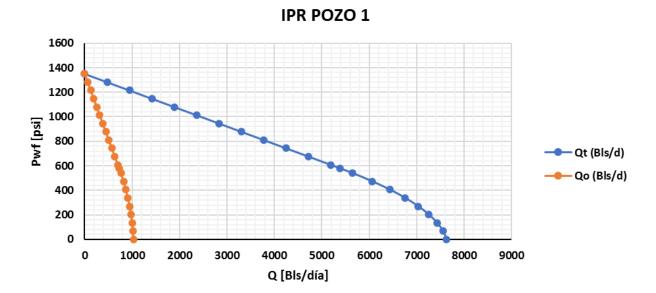
En la sección curva de la IPR, q < qb ó Pwf > Pb, se cumple:

$$q = qb + (q \max - qb) \left[1 - 0.2 \left(\frac{Pwf}{Pb} \right) - 0.8 \left(\frac{Pwf}{Pb} \right)^2 \right]$$
 (12)

$$qb = J * (Py - Pb) \tag{13}$$

$$q \max - qb = \frac{J * Pb}{1,8} \tag{14}$$

La ecuación (12) es la ecuación de Vogel trasladada en el eje X una distancia qb, la ecuación (13) es la ecuación de la recta evaluada en el último punto de esta, y la ecuación (14) se obtiene igualando el índice de productividad al valor absoluto del inverso de la derivada de la ecuación de Vogel, en el punto (qb, Pb).


Las tres ecuaciones anteriores constituyen el sistema de ecuaciones a resolver para obtener las incógnitas J, qb y qmax. Introduciendo las dos últimas ecuaciones en la primera y despejando J se obtiene:

$$J = \frac{q}{Py - Pb + \frac{Pb}{1.8} \left[1 - 0.2 \left(\frac{Pwf}{Pb} \right) - 0.8 \left(\frac{Pwf}{Pb} \right)^2 \right]}$$
(15)

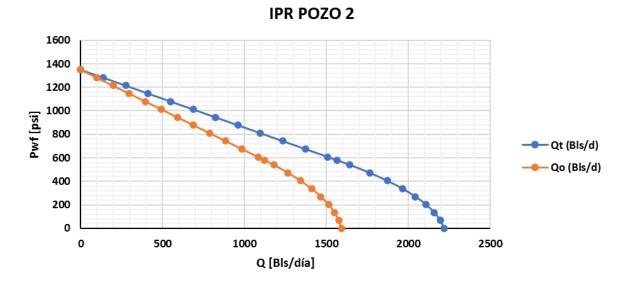

El valor de J, se obtuvo con una prueba de flujo donde la Pwfs estaba por debajo de la presión de burbuja, una vez conocido J, se determinó qb y qmax quedando completamente definida la ecuación de q, la cual permitió construir la curva IPR completa como se observa en la **Figura 34**, **Figura 35 y Figura 36**.

Figura 34.

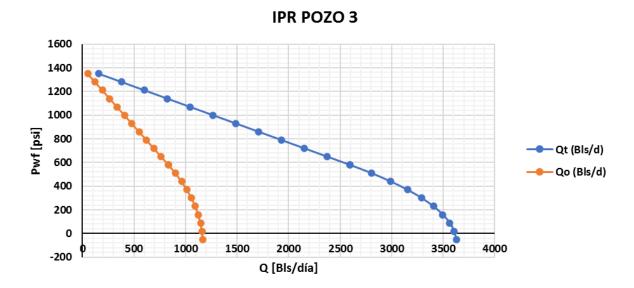

IPR Inflow Performance Relationships Pozo 1.

Figura 35. *IPR Inflow Performance Relationships Pozo 2*

Figura 36. *IPR Inflow Performance Relationships Pozo 3*

Así mismo, en la **Tabla 10**, se presentan los valores de J, qb y qmax hallados para cada caso de estudio.

Otra manera de calcular el índice de productividad es con la ecuación de Darcy cuando se dispone de suficiente información del área de drenaje del yacimiento. (Maggiolo, 2008)

 Tabla 10.

 Índice de productividad, caudal en el punto de burbuja y caudal máximo

PROPIEDAD	POZO 1	POZO 2	POZO 3
q (prueba)	1784	1356	1648
Pb (psi)	580	580	580
Py (psi)	1350	1350	1400
Pwf (psi)	975	675	831
qlb (Bls/d)	5378	1563	2595
Qlmáx (Bls/d)	7628	2217	3615
J (Bls/psi)	6,98	2,03	3,16

4.3.4 Nivel dinámico y nivel de fluido

A partir del nivel de fluido tomado en las pruebas de sonolog y de acuerdo con la Pwf de prueba se determinó el nivel dinámico teniendo en cuenta las siguiente formula:

$$Pwf = CHP + (0.433 * GE * h_{dinámica})$$
 (16)

Donde, se despejo h_{dinámica}, la cual representa dicho nivel.

Teniendo en cuenta el nivel de fluido (NoFo) se dio uso a la ecuación:

$$NoFo = PMP - h_{din\'amica} (17)$$

Donde, el punto medio de perforados (PMP) se determinó teniendo en cuenta la siguiente ecuación:

$$PMP = prof.pozo - \left(\frac{h}{2}\right)$$
 (18)

Donde:

h: Espesor (ft)

Los resultados de la altura dinámica y PMP en cada caso de estudio, se muestran en la **Tabla**11.

Tabla 11.Nivel dinámico y Nivel de Fluido

PROPIEDAD	POZO 1	POZO 2	POZO 3
CHP (psi)	55	0,0	30
PMP (ft)	9289,5	10382,8	11225,8
Nivel dinámico (ft)	2588,5	2208,8	2903,8
Nivel de fluido (ft)	6701	8174	8322

5. Diseño de los Sistemas de Levantamiento Artificial

Después de la determinación, análisis y evaluación de las propiedades del pozo y teniendo en cuenta que se desea obtener caudales más altos de los que actualmente se están dando en el campo, se procedió a realizar el diseño de los SLA con el fin de establecer cuál era la mejor opción para cada caso y evitar trabajar con sistemas ineficientes que sería el caso si dejáramos los equipos que actualmente se encuentran en los pozos de estudio. A continuación, se describe el diseño de los sistemas de levantamiento artificial (SLA) (Bombeo Electrosumergible Bombeo mecánico, y Bombeo PCP), aplicando los casos de estudio descritos en el capítulo 4; teniendo en cuenta que los sistemas nombrados son los más usados en Colombia.

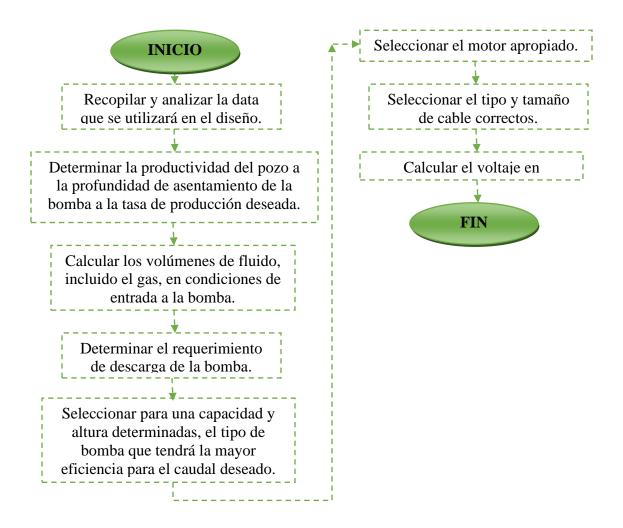
5.1 Bombeo Electrosumergible

Para el diseño del sistema de bombeo electrosumergible (BES) se tomó como referencia la metodología de los nueve pasos para el diseño de un BES propuesta por Baker Hughes Centrilift mencionados en el capítulo 2.3.1. Metodología de los 9 pasos de Baker Hugues (Bombeo electrosumergible). Para aplicar esta metodología fue necesario apoyarse en la herramienta de Microsoft Excel la cual ayudó a hacer más factibles y ordenados el proceso y los resultados. Los nueve pasos realizados se hacen con el fin de determinar la potencia requerida por la bomba la cual es suministrada por un motor eléctrico que se encuentra ubicado en el fondo del pozo, y así mismo, llegar a determinar la energía consumida en superficie, la cual es aportada por la potencia requerida por el transformador y así proceder a realizar el cálculo de la huella de carbono (Martínez Durán & Useche Narváez, 2018). A continuación, se presentan los pasos realizados más específicamente; y en la Figura 37, se puede observar el diagrama de flujo del diseño.

5.1.1 Recolección y análisis de data de pozo

La recolección y análisis de la data de cada caso de estudio que se utilizó en el diseño del sistema BES se realizó en el capítulo 5 y se evidencia en **Tabla 7.**

En la **Tabla 8**, se evidencia los resultados obtenidos de las propiedades mencionadas anteriormente.


5.1.2 Determinación de la capacidad de producción de pozo

La determinación de la capacidad de producción teniendo en cuenta que el yacimiento es subsaturado, se realizó en el capítulo 5, las curvas IPR de cada caso se evidencian en la **Figura**

34, Figura 35 y Figura 36, y los datos de Índice de producción, qb y qmáx para cada caso en la Tabla 10.

Figura 37.

Diagrama de flujo del diseño del SLA BES.

5.1.3 Cálculos de volumen de gas y fracción de este en la entrada de la bomba

La presencia de gas libre en la entrada de la bomba y en la tubería de descarga hace que el proceso de selección del equipo sea mucho más complicado. A medida que el fluido (mezcla de líquido y gas) fluye a través de las etapas de la bomba desde la entrada hasta la descarga a través del tubing, la presión y, en consecuencia, las propiedades del fluido (como el volumen, la

densidad, etc) cambian continuamente. Además, la presencia de gas libre en la tubería de descarga puede crear un efecto de "gas-lift" significativo y puede reducir considerablemente la presión de descarga requerida.

El rendimiento de una bomba centrífuga también se ve considerablemente afectado por el gas. Mientras el gas permanezca en solución, la bomba se comporta normalmente como si estuviera bombeando un líquido de baja densidad. Sin embargo, la bomba comienza a producir una altura inferior a la normal a medida que la relación gas-líquido (en condiciones de bombeo) aumenta más allá de un cierto valor "crítico" (generalmente alrededor del 10 - 15%). Se debe principalmente a la separación de las fases líquida y gaseosa en la etapa de bombeo y debido a un deslizamiento entre estas dos fases. Este fenómeno no ha sido bien estudiado y no existe una correlación general que describa el efecto del gas libre en el rendimiento de la bomba. Por lo general, se selecciona una bomba sumergible asumiendo que no hay deslizamiento entre las dos fases o corrigiendo el rendimiento de la etapa en función de los datos de prueba de campo reales y la experiencia pasada (CENTRILIFT B., 1987)

Por lo general, se deben separar los gases de los otros fluidos antes de la entrada de la bomba para lograr la máxima eficiencia del sistema, por eso es esencial determinar el efecto del gas en el volumen del fluido para seleccionar la bomba y el separador adecuados. Ya que no se contaban con algunos datos de yacimiento necesarios para el diseño, se realizaron los calculos mencionados en el capitulo 5 y los resultados pueden ser observados en la **Tabla 9.**

Conociendo las tres variables Rs, Bo y Bg, se procedió a determinar los volúmenes de petróleo, agua y gas libre y calcular los porcentajes de cada uno. El volumen total de gas (tanto el gas libre como el gas en solución) se determinó de la siguiente manera:

$$G_{total} = \frac{GOR \times BOPD}{1000} = MCF \tag{19}$$

El gas en solución se determinó así:

$$Gsol = \frac{R_s \times BOPD}{1000} = MCF \tag{20}$$

Por ende:

$$G_{libre} = G_{total} - G_{sol} \tag{21}$$

Para hallar los volúmenes de petróleo (Vo), gas (Vg), agua (Vw) y el volumen total del fluido (Vt) se tuvieron en cuenta las siguientes ecuaciones:

$$Vo = BOPD \times Bo$$
 (22)

$$Vg = G_{libre} \times Bg \tag{23}$$

$$Vw = BWPD (24)$$

$$Vt = Vo + Vw + Vg (25)$$

Posteriormente se procedió a calcular el porcentaje de gas libre respecto al volumen total de los fluidos.

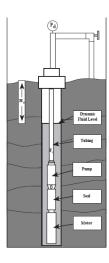
$$\%G_{libre} = \frac{Vg}{Vt} \tag{26}$$

Si el valor de gas libre es inferior al 10% en volumen, tendrá un bajo efecto en el rendimiento de la bomba, por lo que no será necesario instalar un separador de gas. Pero si este valor supera

el 10% se deberá instalar, además de que tendrá que asumir una eficiencia para este dependiendo del valor obtenido. Así mismo, se debe analizar este valor ya que podría afectar la gravedad específica compuesta del fluido del pozo en la entrada de la bomba.

La gravedad específica compuesta, incluido el gas, se puede determinar calculando primero la masa total de fluido producido (TMPF) a partir de los datos originales proporcionados, así:

$$TMPF = \{(BOPD \times Sp.Gr.oil + BWPD \times Sp.Gr.water) \times 62.4 \times 5.6146\} + (GOR \times BOPD \times Sp.Gr.Gas \times 0.0752)$$
(27)


$$Gr.Sp.Comp = \frac{TMPF}{BFPD \times 5.6146 \times 62.4}$$
 (28)

5.1.4 Altura dinámica total

Esta altura total de la bomba se refiere a los ft de líquido que se bombea y es la suma del nivel de fluido dinámico (H_d) , perdidas por fricción de tubería (F_t) y la presión de descarga en cabeza (P_d) .

Figura 38.

Diagrama de altura dinámica total.

Nota. Tomado de: 9 steps for Design BES, pág. 9.

$$TDH = H_d + F_t + P_d \tag{29}$$

Donde:

THD: Altura dinámica total en pies (ft) entregada por la bomba cuando se bombea el volumen deseado.

H_d: Distancia vertical en pies (ft) entre la cabeza del pozo y el nivel de fluido productor estimado a la capacidad esperada y se determina utilizando la ecuación (30).

$$H_d = \text{Pr} of. Bomba - \left(\frac{PIP \times 2.31 ft / psi}{Gr. Sp}\right)$$
 (30)

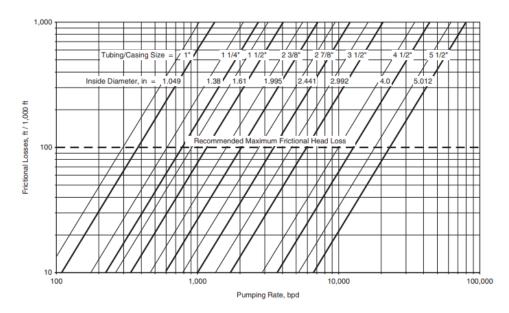
F_{t:} la altura requerida para superar la pérdida por fricción en la tubería medida en pies (ft). Se puede determinar utilizando la correlación de Hazen y Williams (**ecuación (31**)) o por medio de la

Figura 39.

$$F = 2.083 \left\lceil \frac{100}{C} \right\rceil^{1.85} \left\lceil \frac{Q}{34.3} \right\rceil^{1.85} \times \frac{1}{ID^{4.8655}}$$
 (31)

F: Pérdida de carga en ft/1000 ft

Q: Caudal (Bpd)


C: 120

P_d: Altura requerida para superar la fricción en la tubería de superficie, las válvulas y los accesorios, para superar los cambios de elevación entre la cabeza del pozo y los tanques de la bateria. Normalmente, esta altura se mide en psi (kg/cm2) de presión manométrica en la boca del pozo y se puede convertir a cabeza, en pies (ft) de la siguiente manera:

$$P_d = \frac{psi \times 2.31 ft / psi}{Gr.Sp}$$
 (32)

Figura 39.

Estimación de pérdidas de carga por fricción versus la tasa de bombeo en tubería y revestimiento API estándar.

Nota. Grafica propuesta por Hazen y Williams a partir de su correlación. Tomado del libro: Electrical Submersible Pumps Manual - Design, Operation, and Maintenance. Apendix A. Pag. 360. (Takacs, 2009)

5.1.5 Selección del tipo de bomba

Teniendo en cuenta la tasa de producción del fluido deseada, el tamaño de casing y la altura dinámica total de cada caso de estudio se procedió a revisar el catálogo REDA (Schlumberger), y escoger las bombas que estuvieran en los rangos de operación requeridos y se encontraran en el mejor punto de eficiencia. Así mismo, se realizó el análisis a la bomba que actualmente tienen cada pozo para saber si los rangos operativos eran propicios para cada caso deseado.

Para cada uno de los 3 casos se escogieron las bombas A2700N, D2400N y D3500N de 60Hz. Se seleccionaron estas 3 series con el fin de realizar la comparación de cuál de estas consume más potencia (Hp).

Una de las condiciones que determinan la elección de la bomba es que si el volumen deseado cae en un punto donde dos tipos de bombas tienen aproximadamente la misma eficiencia, se debe elegir el tipo de bomba que requiera el mayor número de etapas, ya que, una bomba de este tipo producirá una capacidad más cercana al volumen deseado incluso si la elevación del pozo es sustancialmente mayor o menor de lo esperado. (CENTRILIFT B., 1987)

Después de la selección de la bomba, se procedió a consultar cada curva de rendimiento para determinar el número de etapas necesarias para producir la capacidad deseada a la altura dinámica total calculada previamente.

5.1.5.1 Levantamiento por etapa de la bomba. Para cada caso, se buscó la referencia de la bomba y en la curva de rendimiento se procedió a leer el valor correspondiente a la tasa deseada corregida de la capacidad de elevación de la bomba por etapa (ft). Cabe resaltar que las gráficas de curva de rendimiento están dadas teniendo en cuenta la gravedad especifica del agua (1.0) por lo que se hizo necesario realizar la corrección para la mezcla agua-petróleo, así:

$$Head(ft) = \frac{Head}{GEm}$$
 (33)

5.1.5.2 Numero de etapas. Para establecer el número de etapas que se requieren, se dividió la carga dinámica total en el levantamiento por etapa corregido, así:

$$Node et a paste orico = \frac{THD}{levantamiento por et apa(ft)}$$
(34)

EVALUACION AMBIENTAL Y ENERGETICA DEL SLA BES

79

Se debe tener en cuenta que este valor será un valor teórico, razón por la cual se establece un

factor de seguridad del 20% para garantizar que no haya una limitante por falta de etapas cuando

se ponga en funcionamiento la bomba. De esta manera, se procede así:

$$Noetapas = Noetapasteorico \times 1.2$$
 (35)

5.1.5.3 Potencia de la bomba. La potencia de cada bomba se determina a partir de la misma

curva de rendimiento utilizada para hallar el levantamiento por etapa. Al igual que este, la

potencia leída en la curva de rendimiento de cada bomba es un valor teórico, por lo que se le

deberá sumar el 50% de HP para garantizar que en un cambio de frecuencia de operación no se

vaya a presentar alguna falla. (Martínez Durán & Useche Narváez, 2018)

$$HP = Noetapas \times HPbomba \times GEm \times 1.5$$
 (36)

5.1.5.4 Eficiencia de la bomba. La eficiencia de cada bomba se determina a partir de la

misma curva de rendimiento utilizada para hallar el levantamiento por etapa y la potencia de la

bomba. Como estas graficas están determinadas teniendo en cuenta la gravedad especifica del

agua (1.0), se realizó la corrección por viscosidad teniendo en cuenta la norma American

National Standard for Effects of Liquid Viscosity on Rotodynamic (Centrifugal and Vertical)

Pumo Performance ANSI/HI 9.6.7-2010, (Martínez Durán & Useche Narváez, 2018) la cual

define el parámetro β como se muestra en la ecuación (37)

$$\beta = \frac{26.6(V_{vis})^{0.50} * (H_{bep} - w)^{0.0625}}{(Q_{bep} - w)^{0.375} * N^{0.25}}$$
(37)

Donde:

V_{vis}: Viscosidad Cinemática, cSt

(H_{bep}-w): Cabeza de levantamiento, ft

(Q_{bep}-w): Caudal, gpm

N: Velocidad de la bomba, RPM

Luego de hallar el parámetro β , se podrían presentar tres casos:

Caso 1: En este caso $\beta \le 1$, por lo tanto, el factor de corrección de la eficiencia $C\eta = 1$

Caso 2: En este caso $\beta > 40$, por lo tanto, la metodología no es suficiente y no se garantizan que los resultados sean coherentes con la realidad.

Caso 3: En este caso $1 < \beta < 40$, por lo tanto, $C\eta$ se podrá hallar por medio de la ecuación (38).

$$C\eta = \beta^{-0.0547*}\beta^{0.69} \tag{38}$$

En los casos de estudio se presenta el caso tres por lo que se procede a multiplicar este factor por el valor obtenido de la curva de rendimiento de cada caso. Este sería el valor corregido de la eficiencia de la bomba por efecto de la viscosidad del fluido. (Martínez Durán & Useche Narváez, 2018)

La **Tabla 12,** muestra la correccion de la eficiencia de las bombas por efecto de la viscosidad para cada caso.

Tabla 12.Corrección de eficiencia de las bombas por efecto de viscosidad para los casos en estudio.

	Parámetro β	Factor de corrección Cη	Modelo de Bomba	Eficiencia dada por la curva de rendimiento de la bomba	Eficiencia de la bomba corregida
			A2700N	0,66	0,62
CASO 1	1,95	0,94	D2400N	0,60	0,57
			D3500N	0,66	0,62
			A2700N	0,67	0,63
CASO 2	2,11	0,93	D2400N	0,66	0,62
			D3500N	0,63	0,59
			A2700N	0,67	0,63
CASO 3	1,96	0,94	D2400N	0,66	0,62
			D3500N	0,63	0,59

Finalmente, para proceder a realizar el cálculo de la huella de carbono, se debe hacer la conversión de la potencia de la bomba de Hp a Kw y así poder calcular la energía requerida por la bomba como se evidencia en la ecuación (39):

$$Kw = \frac{Kw}{\% eficiencia}$$
 (39)

5.1.6 Tamaño óptimo de componentes

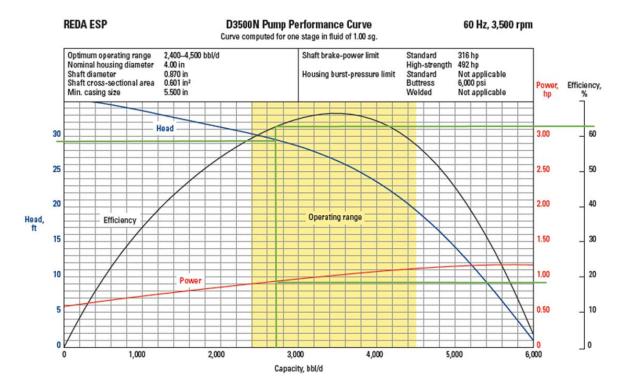

5.1.6.1 Separador de Gas. De acuerdo con los cálculos realizados en el capítulo 5, se estableció que el único pozo en estudio que requiere un separador de gas es el pozo 2; así mismo se volvieron a realizar los cálculos de volúmenes asumiendo una eficiencia en el separador de gas de 90%; esto se puede observar en la ¡Error! No se encuentra el origen de la referencia..

Tabla 13.Volúmenes de fluidos en la entrada de la bomba.

	Val.	3 71	3 71	Vol.	% Gas	C	% Gas no separado	0/ Can	
	Vol. Gas	Vol.	Vol. Agua	Total fluido	libre en el fluido	Separador de Gas	teniendo en cuenta eficiencia de 90%	%Gas libre	Gr.sp.com
Caso 1	256	448	2408	3112	8	N/A 400 Series	N/A	N/A	0,90
Caso 2	1483	1970	665	4118	36	Vortex Gas Separator, VGSA D20-60	148	5	0.83
Caso 3	218	988	1796	3002	7	N/A	N/A	N/A	0.87

Figura 40.

Curva de rendimiento de la bomba D3500N.

Nota. Levantamiento por etapa (curva azul), potencia por etapa (curva roja) y eficiencia (curva negra) para un caudal de 2996 bls/d (caso 3). Tomado de: Catalogo REDA (Schlumberger)

5.1.6.2 Motor. Teniendo en cuenta la potencia de las bombas, se determinó la potencia que requiere el motor debido a que el diseño implica un sobredimensionamiento de este entre un 30 – 50%. Se realizo la búsqueda en el catálogo REDA (Schlumberger) y se determinó que los motores mostrados en la **Tabla 14,** cumplían con el valor de potencia para cada caso de estudio.

Se tuvo en cuenta la siguiente consideración para la selección del voltaje del motor:

Los motores de alto voltaje, consecuentemente de baja corriente, tienen menores pérdidas de cable y requieren cables de menor tamaño de conductor. Los motores de alto voltaje tienen

características de arranque superiores: una característica que puede ser extremadamente importante si se esperan pérdidas de voltaje excesivas durante el arranque. Aunque, cuanto mayor sea el voltaje del motor, más caro será el controlador del motor.

Tabla 14.Tipo de motor y especificaciones de potencia para BES

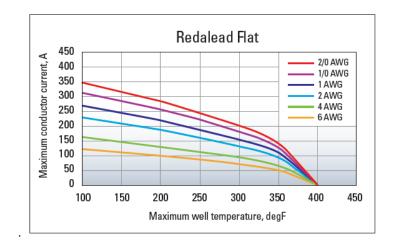
	Velocidad de la bomba (Hz)	Modelos de bomba	Potencia requerida por el motor (Kw)	Motor	НР	KW	Volts	Amps
DOZO 1		A2700N	571	(2) 562 Series	563	420	2173	157
	CO	D2400N	705	Maximus	563	420	2173	157
POZO 1	60	D3500N	586	Motors Type CT-HSS	563	420	2173	157
	60	A2700N	532	(2) 562 Series	563	420	2173	157
P070 4	60	D2400N	515	Maximus	563	420	2173	157
POZO 2	60	D3500N	543	Motors Type CT-HSS	563	420	2173	157
	60	A2700N	537	(2) 562 Series	563	420	2173	157
DOZO 2	60	D2400N	519	Maximus	563	420	2173	157
POZO 3	60	D3500N	548	Motors Type CT-HSS	563	420	2173	157

En algunos casos, los ahorros debidos al cable más pequeño pueden compensarse con la diferencia en el costo del controlador del motor y puede ser necesario hacer un análisis económico para los distintos motores de voltaje. (CENTRILIFT B., The Nine Steps Design of ESP, 1987)

La potencia de freno necesaria para impulsar una bomba determinada se calcula mediante la siguiente fórmula:

$$BHP = Etapastotales \times BHP / etapa \times Gr.Sp$$
 (40)

5.1.7 Selección del cable eléctrico


El material conductor usado es normalmente cobre recocido, pero también se utiliza el aluminio para algunas aplicaciones especiales. La resistencia del área de la sección de un conductor, por otra parte, tiene un efecto inverso sobre la resistencia, (la resistencia es inversamente proporcional al área de la sección). (Baker Hughes Centrilift, 2008)

La American Wire Gauge (AWG) para aplicaciones ESP, ha estandarizado cuatro tamaños de conductores los cuales son #1, #2, #4 y #6.

Debido a la resistencia del conductor, habrá una caída de voltaje desde el suministro de la superficie a los terminales del motor, por consiguiente, al seleccionar el tamaño del cable se recomienda que este tenga unas pérdidas de voltaje menor a 30 volts/1000 ft.

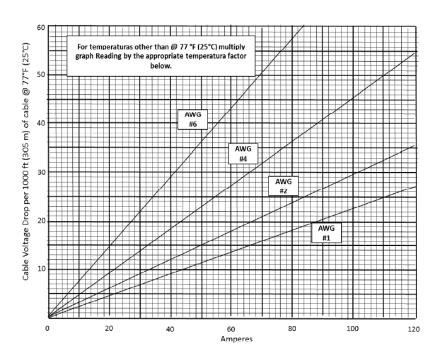

En este diseño se seleccionó el cable #2 teniendo en cuenta la, de capacidad de corriente. De igual manera, para determinar las pérdidas de voltaje se utiliza la gráfica mostrada en la **Figura 42,** y la ecuación (**41**) que fue obtenida a partir de esta figura y su línea de tendencia; el amperaje del motor seleccionado y la temperatura de fondo de pozo permiten leer el valor de pérdidas.

Figura 41.Capacidad de Corriente

Nota. Tomado de Artificial Lift ESP Catalog REDA (Schlumberger) "ESP Components –
Power Cables" (Pag. 392)

Figura 42.Perdidas de Voltaje para cables eléctricos.

Nota. Recuperado en linea de: http://petrowiki.org/ESP_power_cable .

$$Perdidas devolt / 1000 ft = (0.2946 * Amp) + 0.211$$
 (41)

Se debe tener en cuenta que el valor obtenido a partir de la **Figura 42** y la ecuación **(41)**, es para una temperatura de conductor de 77°F (25°C) y una longitud de 1000 ft, por lo tanto es necesario determinar un factor de temperatura para realizar la corrección de este valor para cada caso de estudio. Para esto se tiene en cuenta la ecuación **(42)**

$$TCFcable = 1 + 0.00214(T_{conductor} - 77)$$
 (42)

Donde:

TCFcable: Factor de corrección de temperatura para el cable

T_{conductor}: Temperatura del pozo en la profundidad de ajuste de la bomba

Así mismo, se determinaron las pérdidas de voltaje hasta la profundidad de asentamiento de la bomba. Es recomendable adicionar entre 100 y 200 ft de cable en superficie. Dichas perdidas se calculan de acuerdo con la ecuación (43).

$$\frac{Perdidas devoltaje}{Prof.bomba} = \frac{(valorgrafica*TCF cable)*(prof.bomba+100)}{1000}$$
(43)

5.1.8 Elección de accesorios y equipo opcional.

5.2.8.1 Voltaje en superficie. Este voltaje es la suma del voltaje del motor y las pérdidas de voltaje del cable, así:

$$V_{S} = Volt.motor + \frac{perd.voltaje}{prof.bomba}$$
(44)

Los transformadores elevadores de aislamiento trifásicos generalmente se seleccionan para aumentar el voltaje de un sistema de bajo voltaje, mientras que un banco de tres transformadores monofásicos generalmente se selecciona para reducir una fuente de energía primaria de alto

EVALUACION AMBIENTAL Y ENERGETICA DEL SLA BES

87

voltaje al voltaje de superficie requerido. (CENTRILIFT B., The Nine Steps Design of ESP, 1987).

Al elegir el tamaño de un transformador elevador o un banco de tres transformadores monofásicos, se utiliza la siguiente ecuación para calcular los KVA totales requeridos:

$$KVA = \frac{V_S \times A_M \times 1,73}{1000} \tag{45}$$

Donde,

KVA: Kilo-Volt-Amp ó 1000 Volt-Amp

Vs: Voltaje de superficie

A_m: Corriente de la placa de identificación del motor, Amp

El valor de KVA debe ser convertido a Kilowatts (Kw) para poder realizar los cálculos correspondientes a la huella de carbono así:

$$Kw = KVA * FP \tag{46}$$

Donde,

FP: Factor de potencia (para el diseño de los casos en estudio se estableció un valor de 0.9)

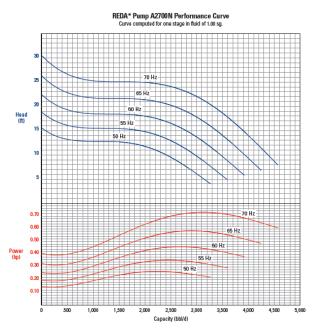
En la **Tabla 15**, se pueden observar los datos de la conversión de KVA a Kw para cada caso de estudio. Así mismo, en la **Tabla 16**, se evidencian los resultados de la energía consumida en superficie al año por el sistema. Para observar el diseño completo de este sistema de levantamiento artificial diríjase al **apéndice C**.

Tabla 15.Conversión de KVA a Kw

CABLE #2	MOTOR	KVA	Factor de potencia	Transformador (Kw)
POZO 1	(2) 562 Series Maximus Motors Type CT-HSS 450 HP	735,99	0,9	662,39
POZO 2	(2) 562 Series Maximus Motors Type CT-HSS 488 HP	760,67	0,9	684,61
POZO 3	(2) 562 Series Maximus Motors Type CT-HSS 525 HP	778,68	0,9	700,81

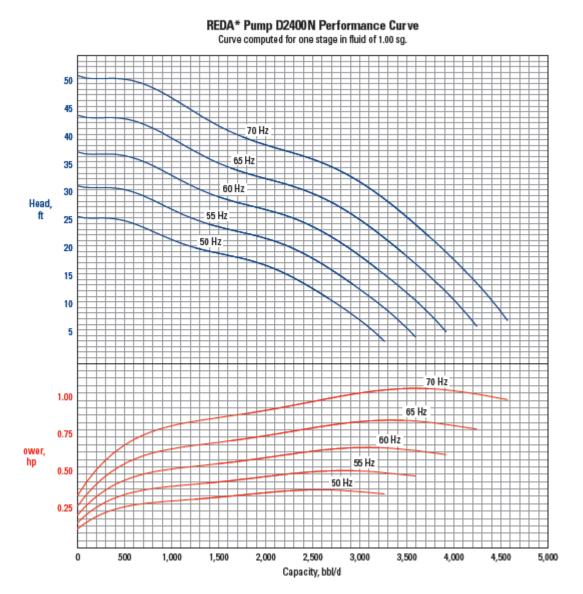
Tabla 16.Energía consumida por el sistema BES en superficie

60 HZ	Modelo de la bomba	Poten cia (Kw)	Eficie ncia de la bomb a	Eficiencia de la bomba corregida	Potenci a de la bomba (Kw)	Motor eléctrico	Transformador (Kw)	Tiempo (h)	Energía consumida por la unidad SLA (Kwh/año)	
	A2700N	274	0,66	0,62	439	(2) 562				
	D2400N	307	0,60	0,57	542	Series				
POZO 1	D3500N	281	0,66	0,62	451	Maximus Motors Type CT- HSS	662,39		11.865.512	
	A2700N	333	0,67	0,63	532	(2) 562			12.631.594	
	D2400N	317	0,66	0,62	515	Series		8640		
POZO 2	D3500N	320	0,63	0,59	543	Maximus Motors Type CT- HSS	684,61		8640	8640
	A2700N	340	0,67	0,63	537	(2) 562			14 415 206	
	D2400N	324	0,66	0,62	519	Series			14.415.396	
POZO 3	D3500N	326	0,63	0,60	548	Maximus Motors Type CT- HSS	700,81		15.027.888	


5.1.9 Selección de la variable de velocidad del sistema de Bombeo.

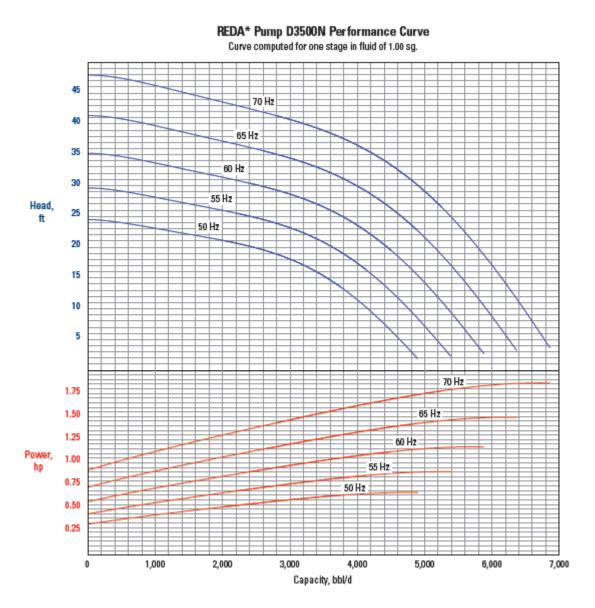
El sistema ESP se puede modificar para incluir un controlador de frecuencia variable Electrospeed para que funcione en un rango mucho más amplio de capacidad, altura y eficiencia. De hecho, es este sistema (Electrospeed) el que se encuentra actualmente en los pozos del campo en referencia. Dado que un motor de bomba sumergible es un motor de inducción, su velocidad es proporcional a la frecuencia de la fuente de alimentación eléctrica. Al ajustar la frecuencia, el sistema de bomba sumergible de velocidad variable (VSSP) ofrece un potencial extraordinario para impulsar la producción, reducir el tiempo de inactividad y aumentar las ganancias. El VSSP se puede utilizar para aumentar la eficiencia en muchos casos, incluidos pozos altamente viscosos, pozos con inyección de agua, etc. (CENTRILIFT B., The Nine Steps Design of ESP, 1987).

En las **Figuras 43** y **44**, se evidencian las graficas tornado de las 3 bombas escogidas y evaluadas en este proyecto, en las que se pueden observar los valores de levantamiento de cabeza por etapa al caudal deseado y los HP/etapa a diferentes velocidades.


Figura 43.

Tornado Bomba A2700N.

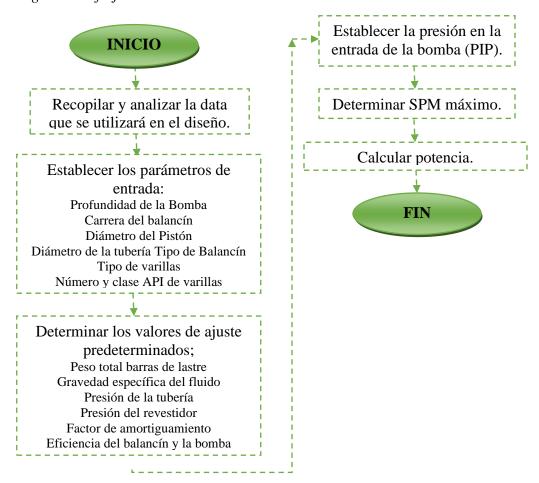
Nota. Tomado de Artificial Lift ESP Catalog REDA (Schlumberger) "ESP Components – Pumps" (Pag. 74)


Figura 44.Tornado Bomba D2400N.

Nota. Tomado de Artificial Lift ESP Catalog REDA (Schlumberger) "ESP Components – Pumps" (Pag. 125)

Figura 45.

Tornado Bomba D3500N.

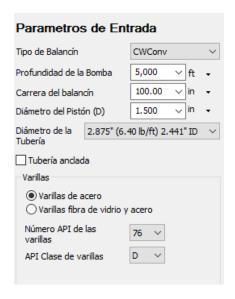

Nota. Tomado de Artificial Lift ESP Catalog REDA (Schlumberger) "ESP Components – Pumps" (Pag. 132)

5.2 Bombeo Mecánico

Como ya se mencionó en el capítulo 2, para el diseño del sistema de bombeo mecánico se dio uso al software Qrod, el cual requiere de alguna información básica para su correcto trabajo como se describe a continuación. En la **Figura 46**, se puede observar el diagrama de flujo del diseño.

Figura 46.

Diagrama de flujo del diseño del SLA Mecánico.



5.2.2 Parámetros de Entrada

La

Figura 47, muestra un pantallazo de los parámetros de entrada requeridos por el software.

Figura 47.Parámetros de entrada requeridos por Qrod.

Nota. Tomado de software Qrod.

Para los pozos de estudio, se tomaron valores de 7000ft, 8500 ft y 8650 ft respectivamente para las profundidades de las bombas; para el diámetro del Pistón de 2.750 in, y para el diámetro de la tubería se tomaron valores de 3.500" (9.30 lb/ft) 2.992" ID teniendo en cuenta los estados mecánicos actuales de cada pozo. En el tipo de varillas se escogió "varillas de acero" y en cuanto al tipo de balancín, carrera del balancín, número de API de las varillas y API clase de varillas se realizaron variaciones.

5.2.3 Valores de Ajuste Predeterminados

La **Figura 48**, muestra un pantallazo de los valores de ajuste predeterminados, requeridos por el software.

Figura 48.

Valores de Ajuste Predeterminados requeridos por Qrod.

Valores de Ajuste Predeterminados									
Peso total barras de lastre 0	.0	lb	•	Factor de amortigua	mento	0.10			
Gravedad específica del fluido	1.00	Sp.Gr.H20) -	Eficiencia del balanci	ín [95.00	%		
Presión de la tubería	80.00	psi	•	Eficiencia de la bomb	oa [95.00	%		
Presión del revestidor	45.00	psi	•						
La presión de entrada de la bomb e índice de productividad.	oa puede intro	oducirse dire	ectame	nte o calcularse a pa	rtir de la presión	de yacimien	nto		
Presión de entrada de 50.00	ps	· (Pres	sión de Yacimiento	1,000.00	psi	•		
ia bolliba			Indi	ce de Productividad	0.200	STB/D/psi	•		

Nota. Tomado de software Qrod.

Los valores del peso total de las barras de lastre, la gravedad especifica del fluido y la eficiencia de la boba fueron calculados por el software a partir de los valores de los parámetros de entrada, diámetro de las barras, corte de agua, gravedad especifica del agua, viscosidad del fluido y longitud del pistón, los cuales fueron ingresados manualmente junto con la presión de la tubería, la presión del revestidor, el factor de amortiguamiento y la eficiencia del balancín.

En cuanto a el factor de amortiguamiento, eficiencia del balancín y eficiencia de la bomba se asumieron teniendo en cuenta lo siguiente:

- a) Factor de amortiguamiento: Es un parámetro que determina la magnitud de las pérdidas por fricción entre la bomba y la superficie. Se utiliza en la ecuación que describe el movimiento de las varillas de bombeo. El factor de amortiguación oscilará normalmente entre 0.05 (fricción muy baja) y 0.5 (fricción muy alta). El valor normal es de 0.1 a 0.15 Para cada uno de los casos se tomó un valor de 0.1.
- b) Eficiencia del balancín: La eficiencia de la unidad es la eficiencia mecánica de la unidad de superficie. El valor normal es el 95%. Para cada uno de los casos se tomó un valor de 80% (en ingeniería de producción siempre se toman valores pesimistas).

c) Eficiencia de la bomba: La eficiencia de la bomba es la relación entre la tasa de producción de superficie y la tasa de desplazamiento de la bomba expresada como porcentaje. Este parámetro explica el deslizamiento de la bomba, así como la contracción del fluido producido a medida que se lleva a la superficie. El valor normal es del 95%, pero para este caso se tomó un valor de 80% para cada uno de los pozos (en ingeniería de producción siempre se toman valores pesimistas).

El cálculo de presión de entrada de la bomba se puede introducir directamente o se puede calcular a partir de la presión de yacimiento e índice de productividad. En los casos de estudio, se calculó a partir de la presión de yacimiento.

5.2.4 Cálculos en base a SPM o Caudal deseado

La **Figura 49**, muestra un pantallazo de los valores de velocidad o de caudal deseado, requeridos por el software.

Figura 49.

Calculo en base a SPM o Caudal deseado.

Nota. Tomado de software Qrod.

Los cálculos que se realizaron podían ser obtenidos a partir del caudal deseado o de la velocidad de bombeo, sin embargo, a caudales altos como los deseados los resultados no fueron muy buenos; para poder obtener la tasa más alta posible se tomó una velocidad de bombeo de 0.1 (la cual es extremadamente baja).

Una vez estuvieron los datos cargados, se prosigue a correr el software y a realizar los correspondientes análisis, primero se realizó una comparación entre caudales (deseado vs obtenido) y segundo se observó la carga de las varillas en superficie (que tanto soporta); para este último caso se asumió que lo ideal es que no superara el 80%, con el fin de evitar el fracturamiento en los equipos, especialmente en las varillas.

Finalmente, se pudo constatar que ninguno de los 4 tipos de balancín era óptimos y viables económicamente para los 3 pozos en estudio, pues QRod arrojó caudales muy bajos y altos porcentajes de carga de las varillas en superficie como se observa en la **Figura 50**, la cual muestra un ejemplo de los resultados obtenidos. Sin embargo, si desea ver todas las variaciones realizadas, ir al **apéndice B**.

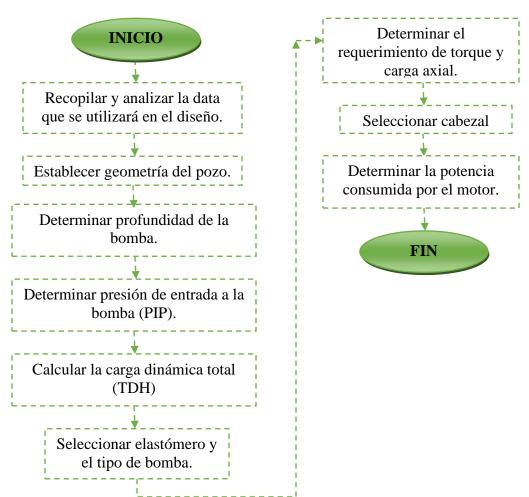
Figura 50.

Ejemplo de los resultados obtenidos por el software Qrod.

Caudal (100% eficiencia bomba)	3.81 BBL/D	
Caudal (80% eficiencia bomba)	3.04 BBL/D	
Varillas en cada sección	42.9%, 57.1%	
Carga de las varillas en superficie	102.0%	
Capacidad (API) mín balancín	228-305-86	
Capacidad mínima potencia motor	0.191 KW	
Potencia en Barra Pulida	0.085 KW	
Carga válvula viajera	26,045 lb	,
Carga válvula fija	15,563 lb	,
Presión Acumulador	605.24 psi	

Nota. Tomado de software Qrod.

5.3 Bombeo PCP


Para el diseño de este sistema de levantamiento artificial, también se tiene en cuenta la información brindada por la compañía operadora como: data de producción, estados mecánicos y propiedades de los fluidos. Al igual que los otros diseños, se realiza con el fin de determinar la potencia consumida por la bomba y así mismo la energía que consume el motor en superficie para mediante estos datos realizar una evaluación ambiental y energética

de este sistema de levantamiento. Como se mencionó en el capítulo 2, este diseño se realizó a través de un software de diseño de cavidades progresivas, obteniendo resultados poco favorables debido a que las propiedades, parámetros y condiciones de los casos de estudio, ya que se salían del rango de screening para este sistema.

En la **Figura 51**, se evidencia el diagrama de flujo para el diseño de este sistema. De igual forma, se quisieron comprobar manualmente algunos cálculos de la siguiente forma:

Figura 51.

Diagrama de flujo del diseño del SLA PCP.

Nota. Adaptado de (Martínez Durán & Useche Narváez, 2018). Evaluación de la huella de carbono producida por los sistemas de levantamiento artificial convencionales en un campo colombiano. Universidad Industrial de Santander.

5.3.1 Profundidad de la bomba

En este diseño, la profundidad de asentamiento de la bomba se determinó con 500 ft de sumergencia, ya que es lo más común en este sistema:

$$Prof.delabomba = NoFo + 500(ft)$$
(47)

5.3.2 Presión de entrada de la bomba (PIP)

Este cálculo se puede realizar como se manifestó en el sistema BES o se puede utilizar la siguiente ecuación:

$$PIP = Pwf - (0.433 * GEm * (PMP - prof.delabomba)$$
(48)

5.3.3 Carga dinámica total (TDH)

Al igual que en el diseño del sistema BES, este valor se calculó teniendo en cuenta la suma del nivel de fluido, las pérdidas de fricción en el tubing y en la línea de flujo, como se evidencia en la ecuación (29)

5.3.4 Elastómero

El tipo de fluido define el tipo de elastómero que se debe emplear en el diseño, ya que son estos dos los que estarán en contacto durante el proceso de producción. Los materiales elastoméricos, entre ellos el caucho natural, tienen propiedades físicas inherentes, u originales.

El elastómero constituye el elemento más "delicado" de la bomba de cavidades progresivas y de su adecuada selección depende en una gran medida el éxito o fracaso de esta aplicación. Los elastómeros más utilizados poseen bases nitrílicas (convencionales), hidrogenación catalítica (elastómeros hidrogenados) y fluoelastómeros. (Chacín, 2003)

La temperatura en la profundidad de asentamiento de la bomba y el API del crudo son importantes a la hora de seleccionar el elastómero. (**Figura 52**)

Para hallar la temperatura se determina el gradiente geotérmico de cada uno de los casos de estudio y además se le suma entre 30 a 60° F de temperatura debido a que es un factor de tolerancia para prevenir efectos de calentamiento de la bomba por la fricción. (Martínez Durán & Useche Narváez, 2018)

La temperatura en la profundidad de asentamiento de la bomba se puede hallar a partir de la ecuación (49)

$$^{\circ}T = \left(\left(\frac{gradientegeotermico}{1000} \right) * prof.delabomba + ^{\circ}T \sup erficie \right) + 60^{\circ}F$$
 (49)

Figura 52.

Tipos de elastómero.

	tipo de elastómero							
Características	Bu	na	Alto de	Hidrogenado	Viton			
	suave	medio	nitrilo	Thatogenado	VICOII			
Elastómeros Weatherford	NBRM 55	NBRM 70	NBRA 70	HNBR (P)	FKM			
in Per	NBRM 64							
ê ê	590-55	590	68A-1	45C (P)				
ast	366/55	366	356		HTR			
- ⊠ ≶	G62A	N080	G60					
Propiedades mecánicas	Excelente		Bueno	Bueno	Pobre			
Resistencia abrasión	Muy b	ouena	Bueno	Bueno	Pobre			
Resistencia aromáticos	Bue	eno	Muy bueno	Bueno	Excelente			
Resistencia H2S	Bue	eno	Muy bueno	Excelente	Excelente			
Resistencia agua	Bueno		Bueno	Excelente	Excelente			
Limite de temperatura	95 °C (203 °F)		105 °C (221 °F)	135°C (221°F)	150 °C(302 °F)			

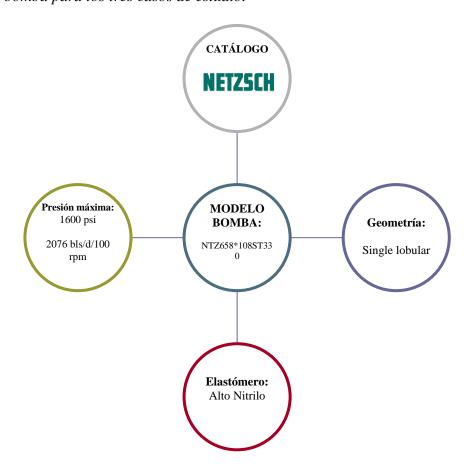
Nota. Tomado de (Martínez Durán & Useche Narváez, 2018).

5.3.5 Tipo de Bomba

Para la selección de la bomba se tiene en cuenta la tasa requerida a las condiciones de operación, por esta razón se establece un caudal de diseño así:

$$Q_{dise\tilde{n}o} = \frac{100 \times Q_{requerido}}{n}$$
 (50)

Donde,


Qrequerida: Tasa deseada (bls/día)

n: Eficiencia volumétrica de la bomba (%)

Para los casos de estudio se consideró una eficiencia del 70% y se seleccionó del catálogo Netzsch el modelo de bomba NTZ 658*ST330 para trabajar a una velocidad de 200 rpm.

Figura 53.

Modelo de bomba para los tres casos de estudio.

Nota. Información tomada y adaptada del Catálogo de Netzsch.

5.3.5.1 Potencia requerida por la bomba. Esta potencia es hallada a partir de una potencia hidráulica (HHP), así:

$$HHP = Q \left(\frac{Bls}{dia} \right) * P(psi) * 0,000017024$$
 (51)

Donde,

P: Presión ejercida por la cabeza dinámica total, psi

Q: Tasa deseada, Bls/d

Por ende, la potencia requerida por la bomba se determina a partir de la ecuación (52)

$$Potencia consumida(HP) = \frac{HHP}{n}$$
 (52)

Donde,

n: eficiencia volumétrica de la bomba

5.3.6 Requerimiento de torque

El torque de la bomba está compuesto por una parte hidráulica, otra de fricción y de resistencia (**ecuación** (53)). Se debe tener en cuenta que el torque de fricción presenta valores pequeños alrededor de 80-90 N-m.

$$T_{total} = T_{hidraulico} + T_{f\ ricción} + T_{resistencia}$$
 (53)

5.3.6.1 Torque hidráulico. Se calcula utilizando la ecuación (54)

$$T_{hidraulico} = c \times \upsilon \times TDH(psi)$$
 (54)

102

Donde,

C: cte = 0.0897

V: Desplazamiento de la bomba, Bls/día/rpm (ecuación (55))

$$\upsilon = \frac{Q_{dise\tilde{n}o}}{velocidaddelabombaN(rpm)}$$
 (55)

5.3.6.2 Torque de resistencia sobre la sarta de varillas. Se determina mediante la ecuación(56) así:

$$T_{resistencia} = \frac{C \times Dr^3 \times L \times \mu \times N}{Dt - Dr}$$
 (56)

Donde,

Dr: Diámetro externo de las varillas (in)

L: Longitud de la sarta de varillas (ft)

μ: Viscosidad de fluido, (cp)

N: Velocidad de rotación del sistema (RPM)

Dt: Diámetro interno de la tubería de producción (in)

5.3.7 Carga Axial

La carga axial que soportan las varillas de bombeo depende de parámetros como el peso de las varillas (F1) y Efecto de la presión sobre la impulsión de la bomba (F2). Las varillas de bombeo API son varillas de acero enroscadas unas con otras por medio de acoples, formando la mencionada sarta, que va desde la bomba hasta la superficie. (Martínez Durán & Useche Narváez, 2018)

Para los tres casos de estudio se seleccionaron varillas de 1 1/8" grado D.

El peso de las varillas se calcula a partir de la siguiente ecuación:

$$F1 = longitud \times pesono \min aldela \text{ var} illa$$
 (57)

Para varillas de 1 1/8" el peso es de 3,67 lb/ft.

El efecto de la presión sobre la impulsión de la bomba es:

$$F2 = Ptotal \times \text{área efectiva}$$
 (58)

Donde,

P_{total}: Presión ejercida por la cabeza dinámica total

El área efectiva es calculada mediante la siguiente ecuación (59)

$$Aefectiva = \frac{\pi}{4} \times \left(Drotor^2 - 645.16 drod^2 \right) \tag{59}$$

Donde,

Drotor: Diámetro mayor del rotor (mm)

Drod: Diámetro de la varilla de bombeo (in)

Según la bomba seleccionada para los casos de estudio el diámetro mayor del rotor es de 28.56 mm.

5.3.8 Selección de cabezal

Los cabezales de rotación deben cumplir con algunas funciones básicas como: dar soporte para las cargas axiales, evitar o retardar el giro inverso de la sarta de varillas, aislar los fluidos del pozo del medio ambiente y soportar el accionamiento electromecánico (para algunos modelos) (Chacín, 2003)

Para seleccionar el cabezal se debe tener en cuenta la carga axial y la potencia consumida por la bomba en cada caso de estudio, de acuerdo al catálogo Nezsch se escoge el mismo cabezal para los tres casos de estudio (ver **Tabla 17**).

Tabla 17.Selección de cabezal para casos de estudio

	Carga Axial (lb)	Potencia bomba (HP)	Modelo Cabezal
Caso 1	35984	496	NDH 200 DH X 93
Caso 2	45860	637	NDH 200 DH X 93
Caso 3	45652	664	NDH 200 DH X 93

5.3.9 Potencia consumida por el motor

La potencia que requiere el motor se calcula de acuerdo con la ecuación (60).

$$P_{reqmotor} = \frac{C * Tsarta * N}{\mu transmisi\acute{o}n}$$
 (60)

Donde,

Tsarta: Torque total de la sarta

N: Velocidad de rotación del sistema (rmp)

µtransmisión: Eficiencia del sistema (%)

C: cte = 1,917x10-4

La eficiencia de transmisión del sistema establecido para los casos de estudio es de 95%, en la **Tabla 18**, se muestra los resultados de la energía consumida en superficie al año; sin embargo, el diseño completo de este sistema de levantamiento se observa en el **apéndice D.**

Tabla 18.

Energía consumida por el sistema PCP en superficie

	Eficiencia de transmisión (%)	Potencia requerida por el motor (HP)	Potencia requerida por el motor (Kw)	Tiempo (h)	Energía consumida por la unidad SLA (Kwh/año)
POZO 1	95	231	172	8640	1486817,07
POZO 2	95	286	213	8640	1842135,53
POZO 3	95	304	226	8640	1956324,38

5.4 Resultados obtenidos

Al realizar el diseño de bombeo mecánico por medio del software Qrod, se comprueba que para los casos de estudio no es posible optar por esta clase de sistema de levantamiento; esto se evidencia al observar todas las variaciones realizadas de carrera de balancín, número y clase de API de las varillas, etc; la cual muestra valores de la carga de varillas en todos los casos de estudio superior al 75% (lo que traería como consecuencia una fractura de estas en un tiempo muy corto), además de velocidades de bombeo extremadamente bajas y caudales demasiado bajos comparados con los necesitan ser obtenidos en los casos de estudio.

En la **Tabla 19**, se evidencian algunos valores obtenidos por medio del software para cada caso de estudio. Sin embargo, remítase al **apéndice B** para ver las variaciones completas que se realizaron por cada caso y los resultados obtenidos de este diseño.

Tabla 19.Algunos Resultados obtenidos por Software Qrod para SLA Mecánico.

	Profundidad de la bomba (ft)	Tipo de Balancín	Longitud del balancín (in)	# API de las varillas	API Clase de Varillas	SPM	Carga de varillas en superficie (%)	Caudal QRod(bbl/d) a 80%
POZO 1		Balanceda por aire				3,2	79,7	426,7
	7000	Mark II	216	99	E	3,6	79,9	485
		CCWConv				2,9	79,8	383,9
		CWConv				2,8	79,9	372,6
		Balanceda por aire				0,1	91,7	11,6
POZO 2	8500	Mark II	216	99	E	0,1	91,7	11,6
2		CCWConv				0,1	91,7	11,6
		CWConv				0,1	91,6	11,6
		Balanceda por aire				0,1	90,2	11,8
POZO	7000	Mark II	216	99	E	0,1	90,2	11,8
3		CCWConv				0,1	90,2	11,8
		CWConv				0,1	90,3	11,8

En cuanto al sistema de bombeo electrosumergible, se comprueba que es el sistema más optimo a operar en los tres casos de estudio, ya que las bombas seleccionadas se encuentran en los rangos de capacidad de bombeo, su eficiencia es óptima y los resultados de potencia son concordes a los equipos seleccionados. En la **Tabla 20**, se evidencian los resultados obtenidos de

la potencia que se requiere para el funcionamiento del este sistema con el equipo actual y con los nuevos diseños. Estos valores se dan en Kw ya que será el valor requerido para el posterior calculo para la realización del balance energético y financiero.

Al realizar el diseño de bombeo PCP por medio del software PC-PUMP y luego hacerlo manualmente, se comprueba que, para los casos de estudio, aunque la energía consumida por la unidad sea más baja que en el sistema BES, no es posible optar por esta clase de sistema de levantamiento, esto lo evidenciamos en el software usado al ver que por el grado de inclinación de los pozos no es recomendable su uso.

Tabla 20.Resultados de potencia de los sistemas de levantamiento BES diseñados y actual

		POZO 1	POZO 2	POZO 3
Unidad/Bomba	Descripción	Potencia necesaria (Kw)	Potencia necesaria (Kw)	Potencia necesaria (Kw)
400FLEXPump17.5	SLA actual	482,39	N/A	N/A
400P35	SLA actual	N/A	507,82	N/A
400P18	SLA actual	N/A	N/A	526,37
A2700N	Diseño	662,39	684,61	700,81
D2400N	Diseño	662,39	684,61	700,81
D3500N	Diseño	662,39	684,61	700,81

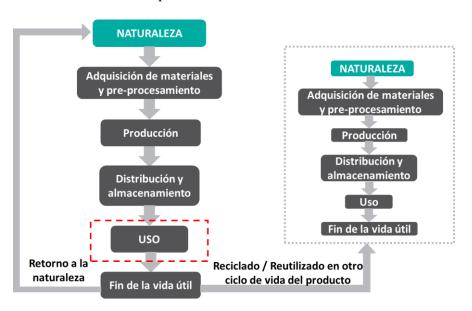
En la **Tabla 21**, se evidencia un resumen de los resultados obtenidos en cada diseño y el sistema de levantamiento artificial que mejor se acopla a los casos de estudio.

Tabla 21.Resumen de los resultados obtenidos en el diseño de los sistemas de levantamiento artificial

SLA	Metodología o Software usado para diseño	Alternativas de diseño	Resultados	Conclusiones
Mecánico	Software Qrod	Se realizan variaciones de tipo de unidad, carrera de balancín, número y clase de API de las varillas.	Valores altos de carga de varillas (>75%) Valores bajos de velocidades para operar y bajos caudales.	Se comprueba que no es óptimo el uso de este SLA en los casos de estudio.
BES	Metodología de 9 Steps Baker Hughes	Se escogen y proponen 3 bombas las cuales se encuentran en el rango de capacidad de bombeo para los tres casos de estudio. Estas son: A2700N, D2400N, D3500N.	Potencias en superficie concordes a los equipos seleccionados. Capacidades de bombeo en el rango de los caudales deseados. Eficiencias apropiadas para el uso (aprox. 60-67%)	Se comprueba que es el sistema más optimo a operar en los tres casos de estudio
РСР	Software PC- PUMP	Se propone tener en cuenta la geometría del pozo por medio del software y hacer los cálculos manualmente sin tenerla en cuenta.	Teniendo en cuenta la desviación de los 3 casos de estudio (>30°) y temperaturas, el software no presenta resultados apropiados.	Se comprueba que el SLA no es óptimo para el uso en los casos de estudio.

Finalmente, se procede a realizar el balance energético y financiero de los tres casos de estudio a partir del diseño del sistema de bombeo electrosumergible (el cual es el sistema más optimo), teniendo en cuenta las tres bombas escogidas y propuestas y el equipo que está operando actualmente.

6. Balance Energético


6.1 Calculo de la Huella de Carbono

Para realizar el balance energético propuesto en este proyecto, se realizó la evaluación de la huella de carbono producida por el sistema de levantamiento de Bombeo Electrosumergible diseñado y actual, a través de la metodología del análisis de ciclo de vida (ACV).

Como se evidencia en la **Figura 54**, el ciclo de vida de un producto comprende varias etapas y en los casos de estudio planteados se considera solamente la tapa de uso resaltada con rojo.

Figura 54.

Limite tomado del sistema de ACV para la evaluación del SLA.

Nota. Adaptado de "Product life Cycle Accounting and Reporting Standard" GHG Protocol.

Recuperado de: https://ghgprotocol.org/sites/default/files/standards/Product-Life-Cycle-

Accounting-Reporting-Standard_041613.pdf

Como se menciona antes, este cálculo se limita solamente al periodo de uso de los SLA, por lo que solo se tiene en cuenta las emisiones generadas por el consumo de energía eléctrica de los sistemas. Esta evaluación se realiza partiendo de las etapas planteadas en trabajos ya realizados

como el de las ingenieras María Alejandra Martínez y Catalina Useche – "Evaluación de la huella de carbono producida por los sistemas de levantamiento artificial convencionales en un campo colombiano".

Como se mencionó en el capítulo 5.2, para los cálculos realizados se apoyó en la herramienta Microsoft Excel en la que además de evidenciar el diseño de los sistemas de bombeo electrosumergible, se usó para realizar el cálculo de la energía requerida en superficie por año (Kwh/año), las emisiones de dióxido de carbono y el balance energético y financiero teniendo en cuenta la huella de carbono de cada caso.

Para el análisis o cálculo de la huella de carbono, se evalúa el alcance 2 mencionado en el capítulo 1, el cual define la generación de electricidad fuera de la organización como una fuente de emisión indirecta y para este cálculo se usa la ecuación (1).

Además de esto, se tiene en cuenta el factor de emisión (FE) planteado por la Unidad de planeación minero-energética (UPME-2020), de 164,38 gCO₂/Kwh.

Para determinar la energía consumida por el sistema de levantamiento electrosumergible durante un año, se multiplico la energía que el transformador le transmite al motor eléctrico por la unidad de tiempo (h), así:

$$Kwh/a\tilde{n}o = Kw*tiempo(h)$$
 (61)

Posteriormente, se procedió a calcular las Toneladas de CO₂/año así:

$$TonCO_2 / a\tilde{n}o = \frac{Kwh}{a\tilde{n}o} \times FE \times \frac{gCO_2}{Kwh} \times \left(\frac{1Ton}{1000000 g}\right)$$
 (62)

La **Tabla 22,** muestra los resultados de este cálculo para los casos de estudio teniendo en cuenta el SLA actual y los SLA diseñados; si desea ver el procedimiento completo, diríjase al **apéndice C-10.**

Tabla 22.Resultados del cálculo de huella de carbono para los SLA BES

		POZO 1	POZO 2	POZO 3
Unidad/Bomba	Descripción	Huella de carbono (Ton CO ₂ /año)	Huella de carbono (Ton CO ₂ /año)	Huella de carbono (Ton CO ₂ /año)
400FLEXPump17.5	SLA actual	685,11	N/A	N/A
400P35	SLA actual	N/A	721,23	N/A
400P18	SLA actual	N/A	N/A	747,58
A2700N	Diseño	940,76	972,31	995,33
D2400N	Diseño	940,76	972,31	995,33
D3500N	Diseño	940,76	972,31	995,33

6.2 Evaluación del impacto del ciclo de vida

Los resultados de la medición de la huella de carbono para cada uno de los casos del sistema de bombeo electrosumergible corresponden a las emisiones indirectas que se dan por el consumo de energía eléctrica de dicho sistema, es por esto por lo que este indicador solo incluye las emisiones por CO₂. A continuación, se muestran los resultados para cada caso de estudio.

En la **Figura 55**, se observan los resultados del cálculo de la huella de carbono para los equipos que actualmente están siendo usados en el campo. Se observa que el pozo 3 es el que más emisiones indirectas de dióxido de carbono está generando, además se observa una relación entre este valor y la profundidad de la bomba.

Teniando en cuenta que además de evaluar los equipos que actualmente se tienen en campo se realizaron diseños con 3 tipos de bombas diferentes al actual en cada pozo, en la **Figura 56**, se observan los resultados del cálculo de la huella de carbono para estos diseños. Se vuelve a observar que el pozo 3 es el que más emisiones indirectas de dióxido de carbono generaría si se deseara cambiar el equipo de acuerdo con los requerimientos y plan de trabajo que tiene la operadora, además de que se vuelve a observar una relación en cuanto a la profundidad de la bomba. Se refleja que no existe discrepancia entre las bombas seleccionadas.

Figura 55.

Huella de carbono generada por el equipo de Bombeo Electro sumergible que se tienen en cada pozo actualmente.

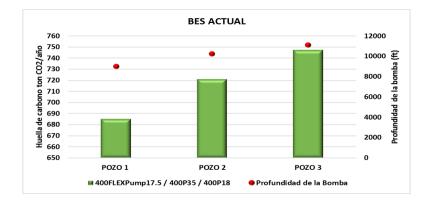
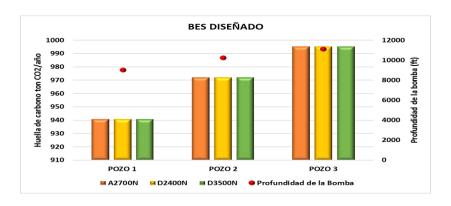



Figura 56.

Huella de carbono generada por los SLA de Bombeo Electro sumergible diseñados para cada pozo.

6.3 Interpretación

Como ya se ha mencionado antes, la huella de carbono se calculó en base a el indicador de energía eléctrica, por lo cual se comprueba que entre más energía se requiera en superficie, más huella de carbono se emitirá. Además de esto, se observa que el sistema de bombeo electrosumergible genera indirectamente un gran valor de huella de carbono como ya se ha planteado en trabajos anteriores con casos de estudio simulados.

Para el diseño del sistema de bombeo electrosumergible se aplicó un análisis de sensibilidad del comportamiento del sistema con la variación de 3 bombas de la misma casa fabricante que se encontraban en el mismo rango de capacidad de bombeo para cada pozo. Cabe resaltar que las tazas de producción deseadas de los pozos estudiados se encuentran entre un rango de fluido total de 2356 y 2784 bls/d. En la **Tabla 23**, se comprueba que, a partir de los resultados obtenidos, no hay variación de la huella de carbono entre una y la otra, a pesar de tener diferentes capacidades de elevación y potencia consumida por etapa en cada bomba.

Tabla 23.Relación Huella de Carbono y Unidad / Bomba SLA BES

UNIDAD / BOMBA	PARÁMETRO	POZO 1	POZO 2	POZO 3
	Capacidad de elevación (Ft)	14,6	18,2	17,3
A2700N	Huella de carbono (Ton CO2/año)	940,8	972,3	995,3
	Capacidad de elevación (Ft)	19,9	26,5	25,3
D2400N	Huella de carbono (Ton CO2/año)	940,8	972,3	995,3
	Capacidad de elevación (Ft)	31,2	35,2	33,5
D3500N	Huella de carbono (Ton CO2/año)	940,8	972,3	995,3

6.4 Balance Energético

El balance energético para cada caso de estudio se realiza teniendo en cuenta el consumo de energía de cada sistema de levantamiento (kWh) y la energía generada por la combustión de los barriles de petróleo producidos durante un año.

El cálculo de la energía generada por la combustión de un barril de petróleo (EGC) se realiza a partir de la fracción molar de los componentes del crudo para cada pozo (brindados por la operadora) y su respectivo poder calorífico, como se evidencia en la **Tabla 24**; Posteriormente, estos valores son multiplicados por la densidad del crudo con la finalidad de hallar los kWh/bbl de aceite.

Además, la tasa de producción de aceite en cada caso de estudio fue multiplicada por los días del año para obtener la producción anual. El respectivo análisis para la determinación de la energía generada por la combustión de los barriles de petróleo establecidos en cada pozo se realizó a través de la siguiente ecuación:

$$\frac{Egenerada}{bbl} = tasadeproducción \times EGC \times (1 - BSW) \times tiempo(d)$$
 (63)

Finalmente, se procede a realizar el balance energético a partir de la diferencia entre la energía generada por la combustión de los barriles de petróleo y la energía consumida por el SLA al año, así:

$$\left(\frac{kwh}{a\tilde{n}o}\right) = Egenerada - Econsumida \tag{64}$$

Tabla 24.Energía generada por la combustión de un barril de petróleo para los pozos en estudio.

				POZO	1		POZO	2		POZO	3
Component e	Peso Molecula r	Poder Caloríf ico Kwh/ Kg	% mol	Fracció n de aceite	Poder Calorífic o aceite Kwh/Kg	% mol	Fracció n de aceite	Poder Calorífic o aceite Kwh/Kg	% mol	Fracció n de aceite	Poder Calorífic o aceite Kwh/Kg
\mathbf{C}_1	16,04	13,90	55,8	0,56	7,76	46,2 2	0,46	6,43	55,8 2	0,56	7,76
\mathbf{C}_2	30,07	13,20	10,9	0,11	1,44	11,5 9	0,12	1,53	10,9 2	0,11	1,44
\mathbf{C}_3	44,09	12,87	13,4	0,13	1,72	17,4 2	0,17	2,24	13,3 5	0,13	1,72
iC_4	58,12	12,60	1,86	0,02	0,23	2,67	0,03	0,34	1,86	0,02	0,23
nC_4	58,12	12,60	5,18	0,05	0,65	7,95	0,08	1,00	5,18	0,05	0,65
iC_5	72,15	12,40	1,5	0,02	0,19	2,47	0,02	0,31	1,54	0,02	0,19
nC_5	72,15	12,40	1,51	0,02	0,19	2,39	0,02	0,30	1,51	0,02	0,19
\mathbf{C}_6	86,17	12,33	1,2	0,01	0,15	1,75	0,02	0,22	1,21	0,01	0,15
$\mathbf{C}_{7}{^{+}}$	102,75	12,39	2,18	0,02	0,27	2,28	0,02	0,28	2,18	0,02	0,27
\mathbf{CO}_2	44,01	0,00	2,4	0,02	0,00	2,07	0,02	0,00	2,35	0,02	0,00
\mathbf{N}_2	28,01	0,00	4,08	0,04	0,00	3,19	0,03	0,00	4,08	0,04	0,00
	TOTAL				12,61			12,64			12,61

Debido a que los valores de energía obtenidos poseen una magnitud alta, se procede a manejar la información en forma porcentual con el fin de desarrollar el análisis de forma más clara y concisa. A continuación, en la **Tabla 25**, se muestra la información obtenida, tomando como 100% la energía generada por la combustión del aceite. Como se observa en la **Figura 55** y **Figura 56**, no hay diferencia en los resultados de la huella de carbono entre las 3 unidades escogidas para los diseños, por lo cual esta condición se tiene en cuenta para el balance energético y la **Tabla 26** aplica para los 3 tipos de unidad / bombas.

Así mismo en la **Figura 57** y **Figura 58**, se representan los valores obtenidos de forma gráfica.

Tabla 25.Balance energético de cada pozo de estudio con el actual SLA BES.

	Energía consumida por la unidad (kWh/año)	% de energía consumida	Energía generada por el uso del aceite (kWh/año)	% de energía generada	Balance Energético (kWh/año)	% de energía Neta
POZO 1	4,17E+06	2,30	1,81E+08	100	1,77E+08	97,70
POZO 2	4,39E+06	0,49	9,03E+08	100	8,99E+08	99,51
POZO 3	4,55E+06	1,15	3,95E+08	100	3,90E+08	98,85

Tabla 26.Balance energético de cada pozo para los diseños propuestos de SLA BES.

	Energía consumida por la unidad (kWh/año)	% de energía consumida	Energía generada por el uso del aceite (kWh/año)	% de energía generada	Balance Energético (kWh/año)	% de energía Neta
POZO 1	5,72E+06	2,00	2,86E+08	100	2,81E+08	98,00
POZO 2	5,92E+06	0,43	1,36E+09	100	1,36E+09	99,57
POZO 3	6,06E+06	0,93	6,52E+08	100	6,46E+08	99,07

Figura 57.

Representación gráfica del análisis energético porcentual del SLA actual.

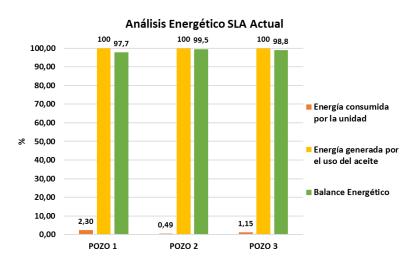
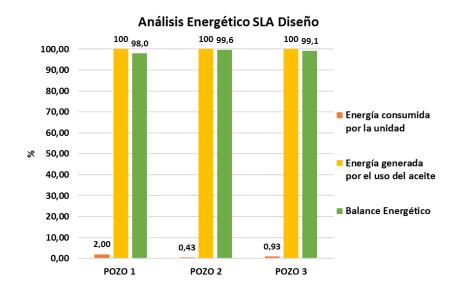



Figura 58.

Representación gráfica del análisis energético porcentual del SLA diseñado.

Se observa que el porcentaje obtenido del balance energético para cada pozo es mayor al 97% (% de energía neta), es decir, la energía consumida respecto a la generada es relativamente baja si se evalúa de forma individual. Sin embargo, se debe tener en cuenta que, si se realizara de forma macro (por campo o por pozos totales de un país), los niveles de energía serían más altos y frente al actual efecto de cambio climático, si representaría un porcentaje a tener en cuenta en la energía consumida para efectos de reducción en la huella de carbono y por ende de los gases de efecto invernadero. Para ver el procedimiento completo realizado diríjase al apéndice C-10.

Por otra parte, para tener una idea más exacta de la energía que se consume por barril de fluido producido (agua y aceite) se divide la energía consumida por la unidad en la producción anual de fluido (agua y aceite) y la energía generada por este mismo, como se explicó anteriormente (Ver **tabla 27**)

Tabla 27.Energía consumida y generada por barril de fluido.

	Caso	Energía consumida por la unidad (kWh/año)	Energía generada por el uso del aceite (kWh/año)	Ql (Bls/día)	Días del año	Producción anual	Energía consumida por barril de fluido (kWh/Bl)	Energía generada por barril de fluido (kWh/Bl)
POZO 1	Qactual	4,17E+06	1,81E+08	1784	360	642,240	6,49	1893
FOZO I	Qdeseado	5,72E+06	2,86E+08	2784	360	1'002,240	5,71	1893
POZO 2	Qactual	4,39E+06	9,03E+08	1356	360	488,160	8,99	1896
FOZO 2	Qdeseado	5,92E+06	1,36E+09	2356	360	848,160	6,97	1896
POZO 3	Qactual	4,55E+06	3,95E+08	1648	360	593,280	7,67	1877
10203	Qdeseado	6,06E+06	6,52E+08	2648	360	953,280	6,35	1877

De acuerdo con los valores obtenidos, se observa que actualmente se consume más energía por barril de fluido, comparado con cualquiera de los diseños propuestos para el caudal deseado, esto, debido a que los caudales actuales son más bajos.

7. Análisis Financiero

El costo de la energía anual consumida por cada pozo se calculó teniendo en cuenta el precio de energía establecido por la Empresa de Energía del Putumayo A.S. ESP la cual calcula las tarifas según las resoluciones CREG 031/97, 079/97, 096/99, 001/2007, 119/2007 y 097 de 2008, el cual es \$626,77/kWh. Dicho coste de energía consumida se calculó así:

Costoenergíanual(\$) =
$$\frac{energiaconsumidaporelSLA}{a\tilde{n}o}(kWh)*\frac{$626,77}{kWh}$$
 (65)

Así mismo se estableció un precio de venta de cuarenta y dos dólares por barril de petróleo (42 USD/BI), el cual fue multiplicado por la producción de aceite en un año para cada pozo y posteriormente obtener las ganancias de venta de este. Luego, se realizó la resta del costo de la energía consumida (Dinero invertido) a las ganancias por venta de crudo anteriormente halladas (ingresos por venta), de acuerdo con la ecuación (66).

$$(MUSD) = Ingresospo rventa - Dineroinvertido$$
 (66)

Como se evidencia en la **Tabla 28** y la **Tabla 29**, al igual que en el balance energético, los resultados se expresan en porcentaje, considerando como 100% el dinero que ingresó por la venta de crudo y partiendo de este valor, el porcentaje que se gastó en el pago de consumo eléctrico.

Tabla 28.Balance Financiero de cada pozo de estudio con el actual SLA BES.

	Dinero Invertido (MUSD)	% de dinero invertido	Ingresos por la venta (MUSD)	% de Ingresos por venta	Balance Financiero (MUSD)	% Neto de dinero
POZO 1	687	17,09	4.023	100	3.336	82,91
POZO 2	724	3,62	20.005	100	19.282	96,38
POZO 3	750	8,49	8.835	100	8.085	91,51

Tabla 29.Balance Financiero de cada pozo para los diseños propuestos de SLA BES.

	Dinero Invertido (MUSD)	% de dinero invertido	Ingresos por la venta (MUSD)	% de Ingresos por venta	Balance Financiero (MUSD)	% Neto de dinero
POZO 1	944	14,85	6.355	100	5.411	85,15
POZO 2	976	3,23	30.199	100	29.224	96,77
POZO 3	999	6,84	14.600	100	13.601	93,16

Así mismo en la **Figura 59** y **Figura 60**, se representan los valores obtenidos de forma gráfica.

Figura 59.

Representación gráfica del análisis económico porcentual del SLA Actual.

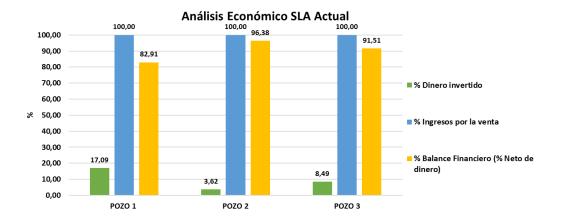
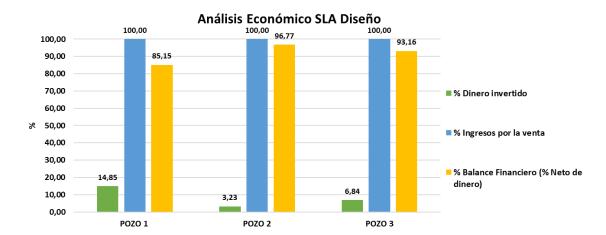



Figura 60.

Representación gráfica del análisis económico porcentual del SLA diseñado.

Se observa que el porcentaje obtenido del balance financiero para los casos de estudio se encuentra entre el 82% y el 96% (% neto de dinero), es decir, este porcentaje es el que realmente representa un valor de ganancias después de restar el valor invertido o pagado por la energía consumida por el SLA. Sin embargo, se debe tener en cuenta que, al igual que en el balance energético, si se realizará de forma macro (por campo o por pozos totales de un país), estos valores deberían ser considerados a la hora de invertir en un proyecto o en este caso

específicamente a la hora de escoger un SLA. Para ver el procedimiento completo realizado diríjase al apéndice C-10.

De igual forma, se determinó la inversión por barril de fluido producido (agua y aceite), expresando este análisis en la **Tabla 30**, y así mismo se realizó un resumen de los datos de inversión en energía en miles de dólares (MUSD) que se realiza durante un año para el funcionamiento de los sistemas de levantamiento, tenga en cuenta que estos valores son los mismos en cada pozo independientemente de la bomba usada (ver **Tabla 31**).

Tabla 30.Inversión por barril producido

	Caso	Inversión (MUSD)	Qt (Bls/d)	Días del año	Producción anual	Dinero invertido Dólar/Bl
POZO 1	Qactual	687	1.784	360	642.240	1,07
10201	Qdeseado	944	2.784	360	1'002.240	0,94
POZO 2	Qactual	724	1.356	360	488.160	1,48
TOLO 2	Qdeseado	976	2.356	360	848.160	1,15
POZO 3	Qactual	750	1.648	360	593.280	1,26
PULU 3	Qdeseado	999	2.648	360	953.280	1,05

Tabla 31.Resultados de inversión en energía para los SLA

	Caso	Inversión en energía al año (MUSD)
POZO 1	Qactual	687,45
POZO I	Qdeseado	943,96
POZO 2	Qactual	723,69
I OZO 2	Qdeseado	975,62
POZO 3	Qactual	750,13
POZO 3	Qdeseado	998,72

Tal vez antes, no se haya tenido en cuenta el efecto ambiental y energético que pueden tener de forma indirecta los sistemas de levantamiento aplicados en el campo estudiado. Y más aún asociarlo a la parte financiera que es tan importante en esta industria. Es por esto por lo que la aplicación de este proyecto llevará a la operadora a considerar un nuevo criterio a la hora de escoger un sistema de levantamiento para sus pozos y además de esto se podrán plantear nuevas propuestas de mejora para la disminución de huella de carbono generada por estos equipos.

8. Conclusiones

A partir de los diseños realizados, se evidencia que el SLA óptimo para los tres casos de estudio es el sistema de bombeo electrosumergible. Se descarta el sistema mecánico debido a los altos valores obtenidos de carga de varillas (>75%), valores bajos de velocidades para operar (0,1 SPM) y caudales extremadamente bajos de líquido (0,1 – 500 bls). Así mismo, se descarta el sistema PCP debido a la desviación de los 3 pozos (>30°) y altas temperaturas que afectan los elastómeros.

Para el diseño del sistema electrosumergible, se propusieron y evaluaron 3 tipos de bombas de la misma casa fabricante (Schlumberger), las cuales fueron óptimas para los tres casos de estudio ya que tenían capacidades de bombeo de acuerdo con el rango de los caudales deseados; Las bombas propuestas y evaluadas fueron: A2700N, D2400N y D3500N.

De acuerdo con los equipos del sistema de bombeo electrosumergible que actualmente se tienen en el campo, se evidencia que el pozo 3 genera una huella de carbono de 748 tonCO₂/año, siendo el pozo con mayor huella de carbono respecto a los pozos 1 y 2, los cuales generan 721 y 685 tonCO₂/año respectivamente.

Para el pozo 1 se evidencia que independientemente de la bomba propuesta en el diseño, no hay variación alguna en la huella de carbono generada (941 tonCO₂/año), a pesar de tener diferentes capacidades de elevación y potencia consumida por etapa. Esta situación se repite para los pozos 2 y 3 los cuales generarían una huella de carbono de 972 y 995 tonCO₂/año respectivamente, siendo este último, al igual que en el equipo del SLA actual, el pozo que mayor valor de huella de carbono produciría.

Respecto a los valores obtenidos de huella de carbono, se observa que estos son directamente proporcionales a la profundidad de los pozos. Esto se evidencia tanto en los sistemas actuales como en los diseños propuestos.

De acuerdo con los valores obtenidos de huella de carbono y la gravedad especifica de cada pozo, no se observa relación alguna a diferencia de lo planteado en trabajos anteriores.

Se comprueba que el equipo del sistema de levantamiento que genera menos emisiones de dióxido de carbono es el que menos energía requiere para su funcionamiento y por ende sus costos financieros serán menores.

Los resultados de balance energético y financiero se representan también en forma porcentual para un mejor entendimiento, debido a que los valores obtenidos presentan magnitudes altas.

La energía consumida por unidad usada actualmente en cada pozo es de 4,17E+06, 4,39+06 y 4,55+06 Kwh/año, para el pozo 1, 2 y 3 respectivamente, lo que indicó que la unidad del pozo 3 es la que consume mayor energía anualmente.

De acuerdo con lo mencionado anteriormente y a partir del análisis energético del sistema de levantamiento actual (BES), se obtiene para cada pozo un porcentaje de energía neta (% balance energético) de 97,7, 99,5 y 98,8%, para el pozo 1, 2 y 3 respectivamente. Es decir, la energía consumida respecto a la energía generada es relativamente baja si se evalúa de forma individual.

Sin embargo, se debe tener en cuenta que, si se realizara de forma macro (por campo o por pozos totales de un país), los niveles de energía consumida por cada unidad serían más altos y deberían ser considerados frente al consumo energético y al actual efecto de cambio climático, ya que representaría un porcentaje a tener en cuenta en la energía consumida para efectos de reducción en la huella de carbono y por ende de los gases de efecto invernadero.

Para el pozo 1, actualmente se tiene un valor de energía consumida por la unidad de 4,17E+06 kWh/año y por ende un valor de energía consumida por barril de fluido (agua y petróleo) de 6,49 kWh/bbl. Por otra parte, para cualquiera de las bombas propuestas en el diseño de este pozo, se tendría un valor de energía consumida por la unidad de 5,72E+06 kWh/año y un valor de energía consumida por barril de fluido (agua y petróleo) de 5, 71 kWh/bbl. Aunque se evidencia que en cualquiera de los diseños la energía consumida por la unidad es mayor a la consumida por el SLA actual, se observa que la energía consumida por barril (kWh/bbl) es menor, esto se asocia a que el caudal de los diseños propuestos es el doble del actual. Dicha situación también aplica para los pozos 2 y 3.

De acuerdo con el balance financiero realizado y teniendo en cuenta que para este análisis se parte de un porcentaje del 100% correspondiente a los ingresos por venta (ganancias por venta de crudo), se observa que para cada equipo que actualmente se tiene en campo el costo de la energía consumida por el SLA es del 17, 4 y 8 %, para el pozo 1, 2 y 3 respectivamente. Por ende, el porcentaje obtenido de ganancias netas (% neto de dinero), es del 83, 96 y 92% respectivamente. Estos porcentajes son los que realmente representan un valor de ganancias después de restar el valor invertido o pagado por la energía consumida por el SLA. Aunque aparentemente los valores del costo de energía consumida por los SLA para cada caso se vean bajos, se debe tener

en cuenta que, al igual que en el balance energético, si se realizara de forma macro (por campo o por pozos totales de un país), estos valores deberían ser considerados a la hora de invertir en un proyecto o en este caso específicamente a la hora de escoger un SLA.

Para el pozo 1, actualmente se tiene un costo de energía consumida por la unidad (dinero invertido) de 687 MUDS y por ende un valor de 1,07 dólares invertidos por barril de fluido. Para cualquiera de las unidades propuestas en el diseño se tendría un costo de energía consumida por la unidad de 944 MUSD y un valor de 0,94 dólares invertidos por barril de fluido. Aunque se evidencia que en cualquiera de los diseños el costo de energía consumida por la unidad es mayor al valor del SLA actual, se observa que el valor invertido por barril es menor, al igual que la cantidad de energía, esto se asocia nuevamente a que el caudal de los diseños es el doble del actual.

En términos generales, los impactos más significativos asociados a la generación de energía por el funcionamiento de los sistemas de levantamiento convencionales son de tipo negativo y abarcan desde el calentamiento global, la disminución de la capa de ozono y el agotamiento de los recursos naturales.

9. Recomendaciones

Teniendo en cuenta el plan de aumento de recobro y de acuerdo con los caudales que manifestó la operadora desea tener; A partir de la evaluación ambiental, energética y financiera realizada en el presente trabajo se realizan las siguientes recomendaciones para los equipos de los nuevos sistemas de levantamiento:

Para el pozo 1, se recomienda usar una bomba A2700N, la cual cuenta con una capacidad de elevación de 13,10 ft/etapa, una potencia consumida/etapa de 0,45 hp/etapa y una eficiencia

corregida del 62%. Como él % de gas libre no supera el 10%, no es necesario dar uso de un separador de gas. Junto con este equipo, se proponen 2 motores 562 Series Maximus Motors Type CT-HSS los cuales cuentan con 563 hp cada uno. Además de un cable plano #2 Redalead Flat y un transformador FixStar.

Para el pozo 2, se recomienda usar una bomba D2400N, la cual cuenta con una capacidad de elevación de 22 ft/etapa, una potencia consumida/etapa de 0,68 hp/etapa y una eficiencia de corregida del 62%. Teniendo en cuenta que el valor de gas libre supera el 10%, se recomienda usar un separador, por lo cual, se propone el 400 Series Vortex Gas Separator, VGSA D20-60, junto con 2 motores 562 Series Maximus Motors Type CT-HSS los cuales cuentan con 563 hp cada uno. Además de un cable plano #2 Redalead Flat y un transformador FixStar.

Para el pozo 3, al igual que en el pozo 2, se recomienda usar una bomba D2400N, la cual cuenta con una capacidad de elevación de 22 ft/etapa, una potencia consumida/etapa de 0,68 hp/etapa y una eficiencia de corregida del 62%. Como el porcentaje de gas libre no supera el 10%, no es necesario dar uso de un separador de gas. Junto con este equipo, se proponen al igual que en el pozo 1 y 2, 2 motores 562 Series Maximus Motors Type CT-HSS los cuales cuentan con 563 hp cada uno, un cable plano #2 Redalead Flat y un transformador FixStar.

Debido a que los caudales de los 3 pozos evaluados se encuentran en el mismo rango y las propiedades son similares, se recomienda realizar la evaluación a pozos con diferentes tasas de producción el fin de poder proponer diferentes equipos de diseño.

Se recomienda realizar esta evaluación a pozos con otro tipo de sistema de levantamiento artificial, con el fin de comprobar si el sistema de bombeo electrosumergible es el que más huella de carbono emite, y promover un plan de acción para la disminución de GEI y la elección optima de los equipos bajo criterios no solo técnicos y financieros, sino ambientales y energéticos.

Se recomienda aplicar la respectiva evaluación ambiental y energética a cada una de las etapas del análisis de ciclo de vida de este producto, debido a que este trabajo se limita únicamente a la etapa de uso. Esto con el fin de poder realizar el cálculo de huella de carbono para el SLA desde su naturaleza hasta el fin de su vida útil.

Referencias Bibliográficas

Acevedo Castro, O. L., Jaramillo, J. E., & Abril Blanco, H. (2013). ESTIMACIÓN DE EMISIONES DE GEI (CO 2 Y CH 4) GENERADAS DURANTE EL TRANSPORTE DE GAS NATURAL EN COLOMBIA, APLICANDO METODOLOGÍA IPCC. Revista Fuentes, El Reventón Energético, 11(2).

Ambrós Atance, L., Calabria Marín, I., Ripoll Uranga, O., & Román Luengo, E. (2011). Criterios de selección de un estándar para la medida de la huella de carbono.

Angelkorte, G. B. (2019). Efeitos da Expansão do Biodiesel e da Troca de Fontes Triglicerídeas no Cenário Energético Brasileiro. Fuentes, el reventón energético, 17(2), 87-99.

Angulo, J. C. P., Simancas, C., & Santos, N. S. (2016). Modelamiento y simulación de un sistema no convencional de levantamiento multifasico. Fuentes, el reventón energético, 14(1), 19-34.

Arismendi, J., & Santander, H. (2007). OPTIMIZACIÓN UTILIZANDO MODELAJE DEL BOMBEO. Caracas, Venezuela.

Baker Hughes Centrilift. (2008). SUBMERSIBLE PUMP HANDBOOK. Claremore, Oklahoma: Baker Hughes Centrilift.

Baker Hughes Company. (2009). Curso de Bombeo Electrosumergible.

Bates, R., Cosad, C., Fielder, L., Kosmala, A., Hudson, S., Romero, G., & Shanmugam, V. (2004). Examinado los pozos productores: Supervisión de los sistemas ESP. Oilfield Review, 12.

Becerra Buitrago, A., & Umbarila Moncaleano, K. (2017). EVALUACIÓN TÉCNICO FINANCIERA DEL DISEÑO DEL PLAN OPERACIONAL DE PERFORACIÓN

RADIAL PARA EL POZO "A" DEL CAMPO ORITO. Bogotá: FUNDACIÓN UNIVERSIDAD DE AMÉRICA.

Camargo, D. B., Orozco, S. H., Ortíz, E. J. F., & Valbuena, H. R. (2020). Consumo de energía, crecimiento económico y emisión de dióxido de carbono en Colombia. Fuentes: El reventón energético, 18(1), 41-50.

Centrilift Baker Hughes. (s.f.). Equipos ESPCP.

CENTRILIFT, B. (1987). Step - 3 Gas Calculation. En The Nine Steps Desing of ESP (pág. 7). USA: Centrilift's Training Center.

CENTRILIFT, B. (1987). Step - 5 Pump Type. En B. CENTRILIFT, The Nine Steps Desing of ESP (pág. 10). USA: Centrilift's Training Center.

CENTRILIFT, B. (1987). Step 1-Basic Data. En B. H. CENTRILIFT, The Nine Steps Design of ESP (pág. 5). USA: Centrilift's Training Center.

CENTRILIFT, B. (1987). The Nine Steps Design of ESP. En The Nine Steps Design of ESP (pág. 22). USA: Centrilift's Trainig Center.

Chacín, N. (2003). Bombeo de Cavidad Progresiva. En Bombeo de Cavidad Progresiva (pág. 25). San Tomé Edo. Anzoátegui - Venezuela: ESP OIL Engineering Consultants.

Escalante, S. (2016). Docplayer. Obtenido de Modulo III. Bombeo Mecánico: https://docplayer.es/79827837-Modulo-iii-bombeo-mecanico.html

Flatern, R. (2015). Bombas eléctricas sumergibles. Oilfield Review.

García, C. A. (2008). Alternativas para la recolección de crudo extrapesado. Fuentes, el reventón energético, 6(2).

Gómez, D. C. H., & Jácome, S. J. O. (2001). Nuevas tendencias en levantamiento artificial: Sistemas de levantamiento artificial combinados. Fuentes: El reventón energético, 1(1), 6.

Guardia, V. M. D., Torres, M. C., Arenas, C. E. V., Castro, R. H., Toro, G. M., & Mendoza, O. B. (2011). Análisis de riesgo y simulación de monte carlo en la valoración de proyectos–aplicación en la industria de los hidrocarburos. Fuentes, el reventón energético, 9(2).

Hughes, C. B. (2009). Equipos ESPCP.

Ihobe. (2012). GUÍA METODOLÓGICA para la aplicación de la norma UNE-ISO 14064-1:2006 para el desarrollo de inventarios de Gases de Efecto Invernandero en Organizaciones. Vasco: Ihobe S.A.

Maggiolo, R. (2008). Optimización de la Producción mediante Análisis Nodal. Lima-Perú: ESP OIL Engineering Consultants.

Mallin, B. (2009). Ingeniería de Aplicaciones Baker Hughes Colombia.

Martínez Durán, M., & Useche Narváez, C. (2018). Evaluación de la huella de carbono producida por los sistemas de levantamiento artificial convencionales en un campo colombiano. Bucaramanga, Santander, Colombia.

Muñoz Rodríguez, Á., & Torres Torres, E. (2007). Evaluación técnica de las estrategias de levantamiento artificial implementadas en campos maduros. Diseño de una herramienta software de selección. Bucaramanga, Santander, Colombia.

Páez, E. G. M., González, F. E. C., & Duarte, C. A. M. (2016). Aplicación de series de tiempo en la realización de pronósticos de producción. Fuentes: El reventón energético, 14(1), 79-88.

Quintero, R. M., Lamus, C. M., Garzón, S. A., Páez, E. M., & cepeda Gómez, F. (2016). Ajuste de la presión anular en pozos con bloqueo por gas para optimización de producción en el campo cira infantas. Fuentes, el reventón energético, 14(2), 65-74.

Quiñones, V. A. H. (2014). Modelo optimizado del desarrollo del lote 64 bajo incertidumbre. Fuentes, el reventón energético, 12(2).

Ramírez, M. (2004). Bombeo Electrosumergible: Análisis, Diseño, Optimización y Trouble Shooting. Monagas-Venezuela: ESP OIL Engineering Consultants.

Rodríguez, C. J., Manosalva, S., Mora, C., Posada Claudia, Moreno, C., & Jiménez, D. (Diciembre de 2009). Agencia Nacional de Hidrocarburos Colombia. Obtenido de http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-

Modelamientos/Presentaciones% 20y% 20Poster% 20Tcnicos/Cuenca% 20Caguan-

Putumayo% 20Geol.% 20Claudia% 20Posada% 20(pdf).pdf

Salamanca, G. C., González, F. E. C., & Velázquez, Á. P. (2010). Optimización de producción de las unidades de flujo x1 y x2 utilizando choques en fondo. Fuentes: El reventón energético, 8(2), 7.

Schlumberger. (2006). REDA Production Systems.

Takacs, G. (2009). Electrical Submersible Pumps Manual (Desing, Operations, and Maintenance). USA: ELSEVIER.